Group 13 metals play a pivotal role in many areas of research ranging from materials to environmental chemistry. An important facet of these disciplines is the design of discrete molecules that can serve as functional materials for electronics applications and modeling studies. A solution-based synthetic strategy for the preparation of discrete Group 13 hydroxo-aquo tridecamers with utility as single-source precursors for amorphous functional thin film oxides is introduced in this dissertation. Several techniques including 1H-Nuclear Magnetic Resonance (NMR) spectroscopy, 1H-Diffusion Ordered spectroscopy, Solid-state NMR, Dynamic Light Scattering, and Raman spectroscopy are used to acquire structural information necessary for understanding the nature of these precursors in both the solid and solution phases. The dynamic behavior of these compounds has encouraged additional experiments that will pave the way for new studies with significant importance as the environmental ramifications of these compounds become relevant for future technologies.
This dissertation includes previously published and unpublished co-authored material.
Identifer | oai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/19193 |
Date | 18 August 2015 |
Creators | Kamunde-Devonish, Maisha |
Contributors | Tyler, David |
Publisher | University of Oregon |
Source Sets | University of Oregon |
Language | en_US |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Rights | All Rights Reserved. |
Page generated in 0.0019 seconds