Made available in DSpace on 2016-06-02T20:06:02Z (GMT). No. of bitstreams: 1
2567.pdf: 3332442 bytes, checksum: 1e03b44e1c1f61f90b947fdca5682355 (MD5)
Previous issue date: 2009-03-06 / Financiadora de Estudos e Projetos / Several techniques are proposed to determine the lag length of a dynamic regression model. However, none of them is completely satisfactory and a wrong choice could imply serious problems in the estimation of the parameters. This
dissertation presents a review of the main criteria for models selection used in the classical methodology and presents a way for determining the lag length from the perspective Bayesian. A Monte Carlo simulation study is conducted to compare the performance of the significance tests, R2 adjusted, final prediction error, Akaike information criterion, Schwarz information criterion, Hannan-Quinn criterion, corrected Akaike information criterion and fractional Bayesian approach. Two estimation methods are also compared, the ordinary least squares and the Almon approach. / Na literatura, muitas técnicas são propostas para determinar o tamanho da defasagem de um modelo de regressão dinâmico. Entretanto, nenhuma delas é completamente satisfatória e escolhas erradas implicam em sérios problemas na estimação dos parâmetros. Este trabalho apresenta uma revisão dos principais critérios de seleção de modelos disponíveis na metodologia clássica, assim como aborda uma maneira de determinar o tamanho da defasagem sob a perspectiva Bayesiana. Um estudo de simulação Monte Carlo é conduzido para comparar a performance dos testes de significância, do R2 ajustado, do erro de predição final, dos critérios de informação de Akaike, Schwarz, Hannan-Quinn e Akaike corrigido e da aproximação Bayesiana fracionada. Também serão comparados os métodos de estimação de Mínimos Quadrados Ordinários e de Almon.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4529 |
Date | 06 March 2009 |
Creators | Furlan, Camila Pedrozo Rodrigues |
Contributors | Diniz, Carlos Alberto Ribeiro |
Publisher | Universidade Federal de São Carlos, Programa de Pós-graduação em Estatística, UFSCar, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0035 seconds