The objective of this project is to fit a sequence of increasingly complex zero-inflated censored regression models to a known data set. It is quite common to find censored count data in statistical analyses of health-related data. Modeling such data while ignoring the censoring, zero-inflation, and overdispersion often results in biased parameter estimates. This project develops various regression models that can be used to predict a count response variable that is affected by various predictor variables. The regression parameters are estimated with Bayesian analysis using a Markov chain Monte Carlo (MCMC) algorithm. The tests for model adequacy are discussed and the models are applied to an observed data set.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-3225 |
Date | 07 July 2009 |
Creators | Prasad, Jonathan P. |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0018 seconds