This research is about liquid-liquid chromatography modelling. While the main focus was on liquid-liquid chromatography, where the stationary and mobile phases are both liquid, theory of different types of chromatography, including the currently most used techniques, were considered as well. The main goal of this research was to develop a versatile liquid-liquid separation model, able to model all potential operating scenarios and modes of operation. A second goal was to create effective and usable interfaces to such a model, implying primarily information visualisation, and secondarily educative visualisation. The first model developed was a model based on Counter-Current Distribution. Next a new more elemental model was developed, the probabilistic model, which better models continuous liquid-liquid chromatography techniques. Finally, a more traditional model was developed using transport theory. These models were used and compared to experimental data taken from literature. The models were demonstrated to model all main liquid-liquid chromatography techniques, incorporated the different modes of operation, and were able to accurately model many sample components and complex sample injections. A model interface was developed, permitting functional and effective model configuration, exploration and analysis using visualisation and interactivity. Different versions of the interface were then evaluated using questionnaires, group interviews and Insight Evaluation. The visualisation and interactivity enhancements have proven to contribute understanding and insight of the underlying chromatography process. This also proved the value of the Insight Evaluation method, providing valuable qualitative evaluation results desired for this model interface evaluation. A prototype of a new graphical user interface developed, and showed great potential for combining model parameter input and exploring the liquid-liquid chromatography processes. Additionally, a new visualisation method was developed that can accurately visualise different modes of operation. This was used to create animations, which were also evaluated. The results of this evaluation show the new visualisation helps understanding of the liquid-liquid chromatography process amongst CCC novices. The model software will be a valuable tool for industry for predicting, evaluating and validating experimental separations and production processes. While effective models already existed, the use of interactive visualisation permits users to explore the relationship between parameters and performances in a simpler yet more powerful way. It will also be a valuable tool for academia for teaching & training, both staff and students, on how to use the technology. Prior to this work no such tool existed or existing tools were limited in their accessibility and educational value.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:564033 |
Date | January 2013 |
Creators | De Folter, Jozefus Johannes Martinus |
Contributors | Sutherland, I.; Cribbin, T. |
Publisher | Brunel University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://bura.brunel.ac.uk/handle/2438/7157 |
Page generated in 0.0023 seconds