Return to search

A Shock Tube and Diagnostics for Surface Effects at Elevated Pressures with Applications to Methane/Ammonia Ignition

Increasing energy demands, and the subsequent need for cleaner energy conversion to combat climate change, creates a challenge that requires both short- and long-term solutions. To that end, new energy conversion cycles such as the Allam-Fetvedt cycle uses the combustion products (CO2) as the working fluid to increase efficiency and reduce emissions. There are several challenges regarding the implementation of these cycles, namely the extreme combustor conditions required (approximately 300 bar). The new High Pressure, Extended Range Shock Tube for Advanced Research (HiPER-STAR) was designed, built, and characterized to study combustion at these conditions to aid in the development of these sCO2 systems, among other extreme environments such as rocket chamber conditions. Further, development of chemical kinetics models used to predict combustion in these conditions typically assume reactions only in the homogeneous bulk gas region, while in these systems there are stagnation regions where hot gases are in contact with a heated wall for extended durations. Heterogeneous reactions are historically difficult to study, as typically there are coupled gas dynamic and transport-related complications that affect the reactions. A shock tube is an ideal location to mitigate and decouple these effects. The current work explores reactive and non-reactive end wall effects at high pressure, an area of interest for implementation by industry and resultantly where better efficiency can be achieved. Further designs have been completed and fabrication is underway to improve the capabilities of the facility to better decouple thermal wall effects and catalytic surface effects, as well as improve other combustion diagnostic capabilities of the facility.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-2105
Date01 January 2022
CreatorsUrso, Justin
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0025 seconds