A fundamental study was conducted to investigate the ability of thin polymeric coatings to prevent metallic contact and fretting corrosion in steel-on-steel systems. Ten polymer types were chosen for study: polymethylmethacrylate (PMMA), polytetrafluoroethylene (PTFE), polyimide (PI), polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), low-density polyethylene (LOPE), high-density polyethylene (HDPE), polysulfone (PSO) and polystyrene (PS). These polymers were applied as thin films to a steel disk which was in turn fretted by a normally-loaded steel sphere.
The experimental investigation consisted of two phases. In the first phase, the lives of the ten polymer types were evaluated over a range of normal loads from 11.1 to 44.5 N. In the second phase, optical and electron microscopy were used to document the fretting process at the sphere-film interface as a function of time. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/76040 |
Date | January 1986 |
Creators | Day, Kent Allen |
Contributors | Mechanical Engineering |
Publisher | Virginia Polytechnic Institute and State University |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Thesis, Text |
Format | xiv, 247 leaves, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | OCLC# 13882077 |
Page generated in 0.002 seconds