Protein-tyrosine phosphatases (PTPs) catalyze the hydrolysis of phosphorylated tyrosines by a 2-step mechanism involving nucleophilic attack by cysteine and general acid catalysis by aspartic acid. In most PTPs the aspartic acid resides on a flexible protein loop, consisting of about a dozen residues, called the WPD loop. PTP catalysis rates span several orders of magnitude, and differences in WPD loop dynamics have recently been show to correlate with the rate of enzymatic catalysis. The rate of WPD loop motion could possibly be related to a widely conserved tryptophan residue on the WPD loop. Therefore, point mutants were made in PTP1B (a human PTP) to the conserved tryptophan residue and their effects on catalytic rate and chemical reaction were studied. The results of these studies are presented in this thesis.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-6656 |
Date | 01 May 2017 |
Creators | Richan, Teisha |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. |
Page generated in 0.0019 seconds