Return to search

Conservative Tryptophan Mutations in Protein Tyrosine Phosphatase PTP1B and its Effect on Catalytic Rate and Chemical Reaction

Protein-tyrosine phosphatases (PTPs) catalyze the hydrolysis of phosphorylated tyrosines by a 2-step mechanism involving nucleophilic attack by cysteine and general acid catalysis by aspartic acid. In most PTPs the aspartic acid resides on a flexible protein loop, consisting of about a dozen residues, called the WPD loop. PTP catalysis rates span several orders of magnitude, and differences in WPD loop dynamics have recently been show to correlate with the rate of enzymatic catalysis. The rate of WPD loop motion could possibly be related to a widely conserved tryptophan residue on the WPD loop. Therefore, point mutants were made in PTP1B (a human PTP) to the conserved tryptophan residue and their effects on catalytic rate and chemical reaction were studied. The results of these studies are presented in this thesis.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-6656
Date01 May 2017
CreatorsRichan, Teisha
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0019 seconds