Return to search

Rozpoznávání druhu jídla s pomocí hlubokých neuronových sítí / Food classification using deep neural networks

The aim of this thesis is to study problems of deep convolutional neural networks and the connected classification of images and to experiment with the architecture of particular network with the aim to get the most accurate results on the selected dataset. The thesis is divided into two parts, the first part theoretically outlines the properties and structure of neural networks and briefly introduces selected networks. The second part deals with experiments with this network, such as the impact of data augmentation, batch size and the impact of dropout layers on the accuracy of the network. Subsequently, all results are compared and discussed with the best result achieved an accuracy of 86, 44% on test data.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:400878
Date January 2019
CreatorsKuvik, Michal
ContributorsPřinosil, Jiří, Burget, Radim
PublisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Source SetsCzech ETDs
LanguageSlovak
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0013 seconds