Return to search

Etude des corrélations entre la microstructure et les propriétés piézoélectriques des films minces Pb(ZrTi)O3 / Study of correlations between microstructure and piezoelectric properties of PZT thin films

Les microsystèmes électromécaniques (MEMS) ont été développés dès le début des années 1980 en s'appuyant sur la technologie de l'industrie microélectronique. Ils ont d'abord été utilisés dans les accéléromètres et les airbags des automobiles. Depuis lors ils se diversifient et connaissent un important essor, notamment grâce à la rapidité De la réponse des matériaux piézoélectriques. La technologie des couches minces piézoélectriques a permis la miniaturisation et les déformations sous tensions d'actionnement plus faibles. Parmi les matériaux piézoélectriques, les films minces de PbZrTiO3 (PZT) morphotropique sont fréquemment utilisés pour leurs propriétés électromécaniques remarquables. Le PZT fabriqué par la voie sol-gel au CEA Leti est à l'état de l'art mondial. Dans le souci de continuer à être compétitif, plusieurs stratégies de R&D sont envisagées, notamment des études approfondies de la microstructure des films PZT pour l'optimiser, afin d'atteindre les propriétés ultimes du PZT. Dans ce but, cette thèse recherche les corrélations entre la microstructure et l'effet piézoélectrique du PZT. Le PZT morphotropique massif, apparu dans les années 1950, est un matériau bien étudié du point de vue microstructurale et piézoélectrique. Il existe plusieurs théories expliquant ses performances piézoélectriques au niveau microscopique. Pour citer les plus connues, le basculement de domaine des phases tétragonale et rhomboédrique, le réarrangement des nano-domaines rhomboédriques, la rotation de l'axe de polarisation dans la phase monoclinique et la transition de phase. Les films minces de PZT morphotropique sont apparus dans les années 1990. Leur microstructure diffère radicalement du PZT massif. Le PZT sol-gel étudié dans ce manuscrit, est contraint et possède une orientation préférentielle des cristaux, des domaines nanométriques et un gradient chimique de Zr et Ti dans l'épaisseur. Notre but est d'étudier les liens entre la microstructure complexe de ces films et leurs propriétés piézoélectriques en utilisant la caractérisation par diffraction des rayons X (DRX). Grace à l'accès au nano-faisceau à l'ESRF, nous avons pu étudier l'influence du gradient chimique de Zr/Ti sur la microstructure de PZT. Les résultats ont montré que la variation de concentration de Zr et Ti engendre une variation du rapport des phases tétragonale et rhomboédrique dans l'épaisseur de la couche. Cette variation suit les oscillations de Zr/Ti dans les films observées par SIMS. Cette observation montre la sensibilité de la microstructure sur la composition chimique. De même, il en résulte la possibilité d'améliorer l'homogénéité de composition du PZT et de ses performances. Car plus le PZT est homogène en composition, meilleurs sont ses coefficients piézoélectriques (d33, e31). Par la suite nous avons effectués des expériences in-situ sous champ électrique sur des capacités contenant le PZT avec le gradient de composition atténué. La microstructure de PZT a été affinée en utilisant la phase tétragonale et rhomboédrique. A 0V, on estime que le PZT contient 40% de phase rhomboédrique et 60% de phase tétragonale. A 30V, on n'observe plus que la présence de la phase rhomboédrique. Les résultats montrent une diminution de la proportion de phase tétragonale au profit de la phase rhomboédrique sous champ électrique. Pour finir nous avons étudié l'influence du gradient de concentration sur l'amplitude du changement de phase en analysant deux échantillons de gradient Zr/Ti différents par DRX in-situ. Nous avons pu montrer que plus l'échantillon est homogène chimiquement, plus il est sujet à la transition de phase sous champ électrique et plus il est performant piézoélectriquement. Finalement, afin d'améliorer les performances piézoélectriques des films PZT, nous proposons de fabriquer des films plus homogènes et plus riches en Ti pour amplifier la transition de phase dans les films. / MEMS have been developed since 1980, when they appeared as derivatives from the microelectronic industry. They were first used in accelerometers and car airbags. They have diversified since then and expanded. One of the main contributors to this expansion are piezoelectric materials. Among them, PbZrTiO3 (PZT) is widely used for its outstanding piezoelectric performances. Sol-gel PZT thin films fabricated at CEA are worldwide state of the art. In order to stay competitive, several R&D strategies have been developed. One of them is a detailed study of PZT microstructure in order to draw correlations with the piezoelectric effect in PZT films. The goal of this study is to optimize PZT microstructure aiming to reach its best piezoelectric properties. For this purpose, this thesis takes advantage of numerous studies performed on PZT bulk ceramics in order to analyze PZT thin films microstructure and its modifications with voltage. PZT bulk ceramics of morphotropic composition are now well known from the piezoelectric and microstructural point of view. There are several theories explaining the piezoelectric effect at the microscopic level, namely tetragonal and rhombohedral domain switching, rhombohedral nanodomains rearrangement, polarization axis rotation in the monoclinic phase and the phase transition.Morphotropic PZT thin films have emerged more recently. Their microstructure is very different from the bulk PZT. Indeed, sol-gel PZT films studied in this manuscript are stressed and contain preferred oriented nanoscale crystals and Ti/Zr composition gradient through the film thickness. Our goal is to study links between the complex microstructure of these films and their piezoelectric properties using X-ray diffraction (XRD).Thanks to the nano-beam at ESRF, we were able to study the influence of the Zr/Ti chemical gradient on the PZT microstructure. Our observations showed that the composition gradient gives rise to a variation of the tetragonal and rhombohedral phase ratio in the layer thickness. This variation follows Zr/Ti composition oscillations evidenced by SIMS. This experiment shows the sensitivity of PZT microstructure to the PZT chemical composition. At the same time, it suggests the possibility of improving the composition homogeneity of PZT and its performances. The more the PZT composition is homogeneous, the better the piezoelectric coefficients are.Then, we performed in-situ XRD under electric field experiments on a capacitor containing the PZT active layer with an attenuated Zr/Ti gradient. The PZT diffraction pattern was refined using the tetragonal and the rhombohedral PZT phases. At 0V PZT contains 40% of rhombohedral phase and 60% of tetragonal phase. At 30V, no tetragonal phase is observed any more. Results show an electric field induced phase transition from the tetragonal to the rhombohedral phase.Finally, we used in-situ XRD to study the influence of Zr/Ti composition gradient on the amplitude of the phase transition of two PZT samples with different Zr/Ti gradient. We showed that the more the sample is homogeneous in composition, the more phase transition it exhibits and the more it is performant.Finally, to improve the piezoelectric performances of PZT films, we propose to improve PZT compositional homogeneity and slightly increase the Ti content to promote the tetragonal phase in order to amplify the phase transition under voltage.

Identiferoai:union.ndltd.org:theses.fr/2015GREAT113
Date20 November 2015
CreatorsKovacova, Veronika
ContributorsGrenoble Alpes, Defaÿ, Emmanuel
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds