When a disordered packed bed, or any heterogeneous media is studied using computational fluid dynamics, the tortuous task of generating a domain and creating a workable mesh presents a challenging issue to Engineers and Scientists. In this Thesis these challenges are addressed in the form of three studies in which both traditional and novel techniques are used to generate packed beds of spheres and cylinders for analysis using computational fluid dynamics, more specifically, the finite volume method. The first study uses a Monte-Carlo method to generate random particle locations for use with a traditional CADbased meshing approach. Computational studies are performed and compared in detail with experimental equivalent beds. In the second study, where there is a need for actual, physical beds to be studied, magnetic-resonance-imaging is used coupled with a novel approach known as image based meshing. In parallel experimental studies are performed on the experimental bed and compared with computational data. In the third study, to overcome fidelity issues with the previous approaches, a physical packed bed is manufactured which is 100% geometrically faithful to its computational counterpart to provide a direct comparison. All three computational studies have shown promising results in comparison with the experimental data described in this Thesis, with the data of Reichelt (1972) and the semi-empirical correlation of Eisfeld & Schnitzlein (2001). All experiments and computational models were carried out by the author unless otherwise stated.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:545905 |
Date | January 2011 |
Creators | Baker, Matthew J. |
Contributors | Gavin, Tabor |
Publisher | University of Exeter |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10036/3396 |
Page generated in 0.0018 seconds