In order to better understand the relationship of tidally dominated depositional environments and their palynological assemblages, the Middle Jurassic sediments of the Lajas Formation, Neuquén Basin were examined. The ambition was to present models and trends which can be used for studies of other such deposits. In order to integrate the palynoassemblages with the environment of deposition, additional granulometric data and nutrient data from XRF analysis were used in combination with the palynology. A new method using correspondence analysis was used for understanding the palaeoecology and floral dynamics. An updated, dynamic model for the Middle Jurassic floral palaeoecology of the Neuquén Basin has been presented and the drivers of floral succession are interpreted as disturbance tolerance and substrate water content. Taphonomic expressions of seral groupings show that later seral stage community palynomorphs are preferentially deposited within or close to distributary systems, whereas earlier seral stage palynomorphs are preferentially deposited in environments of greater accommodation space, such as bayfills. Taphonomic signatures, using palaeoecological groupings provide trends in low (4th/5th) order cycles and lateral variations relating to tidal channels and surrounding bayfill mudstones. A model for 4th/5th order boundaries is also presented using new interpretations of the distribution of pinaceous pollen and microforaminiferal test linings. Using Canonical Correspondence Ananlysis (CCA), a model is presented of depositional environments incorporating palynological data and granulometric proxies for grain size and grain sorting. The relationship between sediment processes in a tidal flat dominated palaeoenvironment and the hydrodynamic properties of some palynomorphs is investigated and presented. The weathering and nutrient status of the substrates throughout the Lajas Formation is presented using XRF proxy data. The proxies are also used with CCA to create nutrient related floral groupings. When plotted stratigraphically, these show cycles of eutrophication and subsequent weathering of the substrates.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:542659 |
Date | January 2011 |
Creators | Stukins, Stephen |
Publisher | University of Aberdeen |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=167073 |
Page generated in 0.0019 seconds