Return to search

Geochemistry, Weathering and Diagenesis of the Bermuda Paleosols:

Thesis advisor: Rudolph Hon / Pleistocene-age terra rossa paleosols are situated on and are intercalated with eolianite and marine carbonate units across the Bermuda Islands. These clay-rich soils were originally thought to the derived from weathering of the volcanic seamount and/or from dissolution of the carbonate units, the paleosols are now believed to be primarily the result of atmospheric dust deposition from Saharan North Africa and the Sahel via long range transport, with some local inputs. If so, these soil units are mixtures of atmospheric deposition during one or more glacial- interglacial cycles. Previous investigations have been conducted on the paleosols to determine their provenance, age, and to identify unique characteristics for island wide mapping. We conducted comprehensive geochemical analyses to determine the degree of chemical weathering and diagenesis, and to identify processes responsible for their formation and development. The paleosols were found to be geochemically similar across all ages, and to show an increased degree of alteration with age rather than with their duration of subaerial exposure, indicating diagenesis by infiltrating meteoric waters as well subaerial weathering. Evidence of paleosol diagenesis suggests vadose flow across the island may not be limited to preferential pathways and that while flow through the limestones is complex, infiltrating waters appear to have allowed for additional alteration of the soils. In addition to the paleosols, clay-rich deposits with paleosol-like textures were identified during coring operations in Harrington Sound and Hungry Bay, beneath present-day sea level. The source and development histories of these materials were previously unknown. Since these clay deposits are situated beneath present-day sea level it is likely that they were deposited and chemically weathered exclusively during glacial low-sea level climate conditions. Geochemical analyses were conducted on the submarine clay samples to determine if they were related to the above-sea level paleosol and to identify their sources. Major and trace element signatures showed the submarine clay deposits to be chemically similar to the paleosols and to be derived from a similar upper continental crust-like parent. Trace element fingerprinting showed the samples to be derived from a parent similar to that of the paleosols; primarily atmospheric dust with some volcanic contributions. These findings provide additional evidence that trade wind vectors for dust transport were present during Pleistocene glacial climate conditions. Weathering indicators reveal the submarine clay samples to be somewhat less weathered than paleosols of similar age and comparable periods of exposure. Like the paleosols, the submarine clays underwent an initial period of rapid subaerial weathering which suggests warm humid climate conditions during glacial low sea level periods. However, the submarine clays did not experience extended periods of diagenesis, which may explain the somewhat lower degree of weathering. Evidence of inputs from the volcanic platform to the paleosols was limited, but comparisons with shallow volcanic rock and highly weathered volcanic residual known as the Primary Red Clay showed some similarities, suggesting that in-situ chemical weathering of the volcanic platform could produce a laterite with some characteristics similar to the Bermuda paleosols. Geochemical analysis of volcanic sands collected at Whalebone Bay showed the igneous fragments to be a result of mechanical weathering and sorting of heavy refractory minerals and we interpret these sediments to be best described as a beach placer deposit. These materials are enriched in insoluble trace elements and REE, and their contribution to the paleosols is limited. / Thesis (MS) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_108780
Date January 2020
CreatorsFrisch, Joel A.
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0).

Page generated in 0.0021 seconds