Return to search

Syntheses and Assemblies of Noble Metal Nanostructures

Shape and size control as well as the control of the assembly of nanostructures are current challenges in nano sciences. Focussing on metal nanostructures all of these aspects have been addressed in the frame of the present work. It was possible to develop a new aqueous seeded growth method that produces gold nanoparticles with adjustable diameters over a large range of sizes. The spherical particles obtained show very low polydispersities and a good long term stability. Furthermore it was possible to reveal the growth mechanism of these particles utilizing electron microscopy and optical investigations coupled with theoretical calculations. It was found that there is a formation of small nucleation sites on the surface of the seeds in the beginning of the growth process. These sites then subsequently grow into "blackberry-like" intermediate particles. A final intraparticle ripening step leads to smooth and uniform spherical gold nanoparticles. By correcting the dielectric function of gold for charging and the free mean path effect and taking into account the particle size distribution it was possible to accurately model the optical properties of the gold sols obtained using Mie theory.

By controlling the concentration of chloride ions it was possible to influence both the ripening of the "blackberry-like" shaped particles and the morphology of gold nanoparticles. An increased concentration of the chloride ions in the standard citrate reduction procedure leads to larger and elongated particles, whereas the complete removal of the chloride ions made it possible to obtain star shaped, decahedral and \"desert-rose\" shaped particle morphologies. Using the layer-by-layer technique gold nanoparticles of different sizes could be immobilized on glass substrates. The surface-enhanced Raman scattering intensity of these mixed films were about 60% higher than compared to a film made of a single particle size. The optical properties were further investigated by comparing experimentally obtained UV/Vis spectra with generalized Mie theory simulations.

Additionally it could be shown that tetrazole and its derivatives are suitable stabilizing agents in the aqueous synthesis of silver nanoparticles. It was found that depending on the tetrazole derivative used the tendencies of the nanoparticles to agglomerate vary significantly. Different agglomeration stages have been investigated by UV/Vis and Raman spectroscopy. The removal of the ligands used and a resulting improvement of the applicability of the silver nanostructures as SERS substrates is still a challenge.

In the last part of this work the focus was changed from the optical properties of noble metal nanoparticles to their catalytic properties. Therefore gold and palladium nanoparticles have been successfully immobilized on highly porous zinc oxide aerogels. It was possible to synthesize sponge-, flake-, and ribbon-like zinc oxide gels with high specific surface areas. The facile approach of generating mixed metal oxide/noble metal aerogels is very promising for the preparation of highly selective and highly active heterogenous catalysts. First catalytic investigations of a sponge-like palladium loaded zinc oxide aerogel toward the semi-hydrogenation of acetylene showed very high selectivities of up to 85%.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:26369
Date15 December 2012
CreatorsZiegler, Christoph
ContributorsEychmüller, Alexander, Kaskel, Stefan, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds