Return to search

Ein Beitrag zur mechanischen Charakterisierung und numerischen Simulation von Aramid-Papier für Luftfahrtanwendungen

In Luftfahrzeugen werden häufig Sandwich-Strukturen verwendet, da somit vergleichsweise hohe gewichtsspezifische Steifigkeiten und Festigkeiten erreicht werden können. Hierbei werden für Deckschichten überwiegend Faserverbund-Kunststoffe angewendet. Die Kerne bestehen zumeist aus Honigwaben, welche aus phenolharzbeschichtetem Aramid-Papier gefertigt sind. Somit können Anforderungen an die Feuer- und Korrosionsresistenz erfüllt werden. Sandwich-Strukturen im Allgemeinen sind dabei anfällig für lokale Belastungen, sowie Lasten senkrecht zur Struktur. Dies können beispielsweise Schlagbelastungen, Lasteinleitungen durch Verbindungselemente oder Druckunterschiede sein. Folglich bedarf die Zertifizierung von Luftfahrtstrukturen zumeist umfangreiche experimentelle Untersuchungen zum Nachweis des Tragverhaltens und der Schadenstoleranz. Dieses Vorgehen ist äußerst zeitaufwendig und somit kostenintensiv. Virtuelle Tests, welche durch einzelne reale Versuche validiert werden, können den experimentellen Aufwand erheblich reduzieren. Dazu bedarf es fundierter Kenntnisse der mechanischen Eigenschaften der einzelnen Komponenten der Sandwich-Struktur. Während diese für Faserverbund-Kunststoffe als gegeben angenommen werden kann, trifft dies für Honigwabenkerne bestehend aus Aramid-Papier nicht zu.
Demzufolge wird in dieser Arbeit ein Vorgehen vorgestellt, welches eine mechanische Charakterisierung und numerische Simulation von papierartigen Materialien ermöglicht. Dabei werden zunächst anwendbare Prüfmethoden für Aramid-Papier evaluiert. Darauf aufbauend werden ein verbessertes Schubprüfverfahren und ein neuartiges Druckprüfverfahren für Papier erarbeitet. Anschließend werden verschiedene luftfahrttaugliche Papiere mechanisch charakterisiert und Anforderungen an ein Materialmodell für die numerische Simulation abgeleitet. Daran anknüpfend wird ein spezielles Materialmodell entwickelt, welches das elastisch-plastische orthotrope Materialverhalten mit unterschiedlicher Druckplastifizierung und regressivem Versagen abbilden kann. Dieses Modell wird in LS-DYNA implementiert und validiert. Darauf aufbauend werden Validierungsrechnungen am Aramid-Papier sowie an Honigwaben- und Faltkern-Strukturen durchgeführt. Abschließende exemplarische Simulationen von Deckschichtablöseversuchen demonstrieren die mit dem Vorgehen erreichbare Qualität der Ergebnisse sowie Möglichkeiten zum virtuellen Testen und virtuelle Parameterstudien. / A variety of components in aircraft are made out of sandwich structures because of its high weight-specific stiffness and strength. In many cases, fiber composite plastics are used for face-layers and cores consist of honeycombs, which are made of phenolic resin coated aramid paper. Thus, requirements for fire and corrosion resistance can be met. Sandwich structures in general are prone to local loads as well as loads perpendicular to the structure. This can be, for example, impact loads, load applications by connecting elements or pressure differences. Consequently, certification of aerospace structures usually requires extensive experimental tests to demonstrate structural behavior and damage tolerance. This procedure is extremely time-consuming and therefore cost-intensive. Virtual tests, which are validated by individual experiments, can significantly reduce the experimental effort. This requires a knowledge of the mechanical properties of the individual components of the sandwich structure. While this is given for fiber composite plastics, this is not true for honeycomb cores consisting of aramid paper.
Consequently, this work presents a procedure that allows mechanical characterization and numerical simulation of paper-like materials. First, applicable test methods for aramid paper are evaluated. Based on this, an improved shear test method and a novel compression test method for paper are developed. Subsequently, various paper-like materials are mechanically characterized. The requirements for a material model for numerical simulation are derived. Following on from this, a special material model is developed that can reproduce the elastic-plastic, orthotropic material behavior with different plastification for compressive loads and a regressive failure model. This material model is implemented and validated in LS-DYNA. Based on this, validation calculations are carried out on aramid paper, honeycomb and foldcore structures. Final exemplary simulations of single-cantilever-beam tests demonstrate the achievable quality of the results as well as possibilities for virtual testing and virtual parameter studies.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:74255
Date26 March 2021
CreatorsBugiel, Alexander
ContributorsWolf, Klaus, Middendorf, Peter, Miletzky, Frank, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds