La biomasse lignocellulosique comprend les sous-produits agricoles et industriels pouvant être utilisés comme matière première dans des bioprocédés variés destinés à produire des molécules d'intérêt énergétique ou chimique. Ces ressources lignocellulosiques, peuvent notamment être fournies par l'industrie papetière qui est particulièrement adaptée pour les bio-raffineries modernes car elle est en capacité de produire en grande quantité un substrat ayant une faible teneur en lignine et sans composés inhibiteurs. La bagasse de canne à sucre est également un substrat prometteur par sa composition chimique simple et son abondance dans les pays tropicaux. Lors de l'utilisation de ces substrats, l'hydrolyse enzymatique constitue une étape cruciale permettant la transformation des fibres de cellulose en une source de carbone fermentescible. Si les aspects biochimiques de cette étape d'hydrolyse font l'objet de nombreuses recherches et de développements, les réactions sous haute teneur en matière sèche font apparaître des limitations physiques qui sont beaucoup moins étudiées et analysées mais constituent des verrous scientifiques et technologiques qui freinent actuellement l'utilisation de cette ressource abondante et durable. Ce travail s'inscrit dans ce contexte et propose l'étude de cette étape d'hydrolyse enzymatique de la lignocellulose en s'intéressant conjointement aux aspects biochimiques et physiques de façon à aller vers une compréhension et une maîtrise des transferts (de masse, de chaleur) dans les réactions à forte concentration en substrat. La stratégie adoptée a consisté à réaliser et analyser des réactions d'hydrolyse sous différentes conditions opératoires en travaillant dans un premier temps sur des concentrations intermédiaires (suspension semi-diluée), c'est-à-dire en introduisant, mais de façon limitée, les complexités dues aux interactions entre particules/fibres de lignocellulose. Les résultats obtenus sont ensuite utilisés pour élaborer une stratégie adaptée aux fortes concentrations. Les aspects physiques analysés sont essentiellement le comportement rhéologique du milieu réactionnel ainsi que la morpho-granulométrie des objets en suspension. Différentes métrologies, tant in-situ que ex-situ, ont été mises en œuvre et apportent des résultats complémentaires. Les études ont été menées sur un substrat de référence, le papier Whatman, et deux substrats à vocation industrielle: la pâte à papier et la bagasse de canne à sucre. La stratégie d'étude porte sur les aspects suivants: (i) le suivi de l'évolution des comportements rhéologiques et des propriétés morphologiques des suspensions au cours de l'hydrolyse, (ii) l'étude des mécanismes d'hydrolyse lors de la dégradation des substrats, (iii) l'étude de l'impact de la composition et de la structure des substrats sur les cinétiques de solubilisation et d'hydrolyse, (iv) la quantification de la contribution des différentes activités enzymatiques, seules ou en mélange par une approche physique multi-échelle et (v) le contrôle et l'optimisation des conditions d'alimentation dans un procédé discontinu alimenté (fed-batch) afin d'atteindre des conditions de milieu concentré. Les chapitres 1 et 2 de ce document sont consacrés à une étude bibliographique du sujet et à la présentation des matériels et méthodes mis en œuvre. Le troisième chapitre présente les résultats obtenus et leur analyse. Il est constitué de trois sections: tout d'abord une étude des propriétés des différents enzymes ou cocktail d'enzymes utilisés, des substrats retenus et des suspensions avec, notamment, la détermination des régimes semi-dilués et concentrés. Ensuite sont présentées et analysées les hydrolyses effectuées en milieu semi-dilué. Les mécanismes d'hydrolyse (fragmentation, solubilisation, hydratation et séparation des agglomérats) sont étudiés pour diverses concentrations et divers enzymes/cocktails. Enfin les résultats en milieu concentré sont présentés dans une dernière section. / Lignocellulosic biomass consists of several agriculture and industrial by-products that can be used as raw material for several bioprocesses to obtain range of products. Among lignocellulosic sources, the pulp & paper industry is appropriated for modern bio-refining thank to pulp with low lignin content and free of inhibitory compounds. Besides, sugarcane bagasse is a very promising feedstock because of its simple chemical composition and its abundancy especially in tropical countries. In the bioconversion of lignocellulose, enzymatic hydrolysis is a crucial step that allows the transformation of cellulosic and hemicellulosic fibers into fermentable carbon sources. The lack of knowledge about physical limitations and hydrolysis mechanisms, especially at high dry matter content, stands as the main barrier which forbids the scale-up of bio-refinery processes. Thus, the efficient and sustainable use of lignocellulosic resources is currently a major challenge and need to be investigated. In this context, this PhD focused on the enzymatic hydrolysis of lignocellulose by both physical and biochemical approaches. The strategy consisted in carrying out and in analyzing the hydrolysis reactions under different operating conditions with semi-dilute suspensions. Then, obtained results were used to develop a hydrolysis strategy for concentrated suspensions. Different methodologies, in- and ex-situ analyses, were implemented and provided complementary results. From physical approach, analyses consisted in rheological behavior of suspensions as well as the morpho-granulometry of particles. The study was carried out on a reference substrate, Whatman paper, and on two industrial substrates, paper pulp and sugarcane bagasse. The strategy aimed to investigate different stakes: (i) evolution of rheological behaviors and the morphological properties of suspensions, (ii) hydrolysis mechanisms during the degradation of substrates, (iii) impact of substrate composition and structure on solubilization and hydrolysis kinetics, (iv) quantification of the contribution of single enzyme and enzyme mixture activities by multi-scale physical approaches and (v) control and optimization of feeding parameters for fed-batch process in order to access to concentrated suspension. Chapters 1 and 2 of this document are devoted to a research bibliographic and presentation of materials and methods. The third chapter presents obtained results and discussion in three sections. The first one is a study of the properties of different enzymes and substrates, in particular, the determination of semi-dilute and concentrated regime. Subsequently the enzymatic hydrolysis at semi-dilute regime is presented to highlight the hydrolysis mechanisms (fragmentation, solubilization, solvation and agglomerate separation) in relationship with enzyme mixtures and dosages. Finally, results in concentrated regime are discussed in the final section.
Identifer | oai:union.ndltd.org:theses.fr/2017TOU30133 |
Date | 10 May 2017 |
Creators | Le, Tuan |
Contributors | Toulouse 3, Fillaudeau, Luc, To, Kim Anh |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds