Dissolved organic matter (DOM) is a complex mixture of organic compounds and represents the largest reservoirs of carbon (C) on earth. Particulate organic matter (POM) is another important carbon component in C cycling and controls a variety of biogeochemical processes. Estuaries, as important interfaces between land and ocean, play important roles in retaining and transforming such organic matter (OM) and serve as both sources and sinks of DOM and POM. There is a diverse array of both autochthonous and allochthonous OM sources in wetland/estuarine ecosystems. A comprehensive study on the sources, transformation and fate of OM in such ecosystems is essential in advancing our understanding of C cycling and better constraining the global C budget.
In this work, DOM characteristics were investigated in different estuaries. Dissolved organic matter source strengths and dynamics were assessed in a seagrass-dominated subtropical estuarine lagoon. DOM dynamics controlled by hydrology and seagrass primary productivity were confirmed, and the primary source of DOM was quantified using the combination of excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC) and stable C isotope analysis. Seagrass can contribute up to 72% of the DOM in the study area. The spatial and temporal variation of DOM dynamics was also studied in a freshwated dominated estuary fringed with extensive salt marshes. The data showed that DOM was primarily derived from freshwater marshes and controlled by hydrology while salt marsh plants play a significant role in structuring the distribution patterns of DOM quality and quantity. The OM dynamics was also investigated in a mangrove-dominate estuary and a comparative study was conducted between the DOM and POM pools. The results revealed both similarity and dissimilarity in DOM and POM composition. The dynamics of both OM pools are largely uncoupled as a result of source differences. Fringe mangrove swamps are suggested to export similar amounts of DOM and POM and should be considered as an important source in coastal C budgets. Lastly, chemical characterizations were conducted on the featured fluorescence component in OM in an attempt to better understand the composition and origins of the specific PARAFAC component. The traditionally defined ‘protein-like’ fluorescence was found to contain both proteinaceous and phenolic compounds, suggesting that the application of this parameter as a proxy for amino acid content and bioavailability may be limited.
Identifer | oai:union.ndltd.org:fiu.edu/oai:digitalcommons.fiu.edu:etd-2729 |
Date | 30 September 2014 |
Creators | Ya, Chao |
Publisher | FIU Digital Commons |
Source Sets | Florida International University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | FIU Electronic Theses and Dissertations |
Page generated in 0.0019 seconds