Return to search

Ordonnancement multi-critère sur Clouds

Le cloud computing a émergé au cours de la dernière décennie pour être largement adopté aujourd'hui dans plusieurs domaines de l'informatique. Il consiste à proposer des ressources axées, ou non, sur le marché sous forme de services qui peuvent être consommés de manière souple et transparente. Dans cette thèse, nous traitons le problème d'ordonnancement, un des enjeux majeurs du cloud. Selon la configuration de cloud ciblée, nous avons identifié trois niveaux d'ordonnancement : niveau service, niveau tâche et niveau machine virtuelle. Nous revisitons la modélisation du problème, la conception et l'implémentation des métaheuristiques multiobjectives pour chaque niveau d'ordonnancement du cloud. Les ordonnanceurs à base de métaheuristiques que nous proposons portent sur différents critères notamment la consommation d'énergie, les émissions de gaz à effet de serre, le profit et la qualité du service (coût et temps de réponse). Nous prouvons leur capacité d'adaptation aux contraintes du cloud en les intégrant au sein du gestionnaire de cloud OpenNebula. De plus, nos ordonnanceurs ont été largement expérimentés utilisant des configurations réalistes de cloud sur Grid'5000, en tant qu'infrastructure en tant que service (IAAS), et des scénarios concrets basés sur les instances et les tarifications d'Amazon EC2. Les résultats présentés montrent que les méthodes que nous proposons surpassent les approches l'ordonnancement existantes sur tous les critères cités précédemment.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00915043
Date28 November 2013
CreatorsKessaci, Yacine
PublisherUniversité des Sciences et Technologie de Lille - Lille I
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0033 seconds