Return to search

Routing and Efficient Evaluation Techniques for Multi-hop Mobile Wireless Networks

In this dissertation, routing protocols, load-balancing protocols, and efficient evaluation techniques for multi-hop mobile wireless networks are explored.

With the advancements made in wireless communication and computer technologies, a new type of mobile wireless network, known as a mobile ad hoc network (MANET), has drawn constant attention. In recent years, several routing protocols for MANETs have been proposed. However, there still remains the need for mechanisms for better scalability support with respect to network size, traffic volume, and mobility. To address this issue, a new method for multi-hop routing in MANETs called Dynamic NIx-Vector Routing (DNVR) is proposed. DNVR has several distinct features compared to other existing on-demand routing protocols, which lead to more stable routes and better scalability.

Currently, ad hoc routing protocols lack load-balancing capabilities. Therefore they often fail to provide good service quality, especially in the presence of a large volume of network traffic since the network load concentrates on some nodes, resulting in a highly congested environment. To address this issue, a novel load-balancing technique for ad hoc on-demand routing protocols is proposed. The new method is simple but very effective in achieving load balance and congestion alleviation. In addition, it operates in a completely distributed fashion.

To evaluate and verify wireless network protocols effectively, especially to test their scalability properties, scalable and efficient network simulation methods are required. Usually simulation of such large-scale wireless networks needs a long execution time and requires a large amount of computing resources such as powerful CPUs and memory. Traditionally, to cope with this problem, parallel network simulation techniques with parallel computing capabilities have been considered. This dissertation explores a different type of method, which is efficient and can be achieved with a sequential simulation, as well as a parallel and distributed technique for large-scale mobile wireless networks.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7455
Date03 August 2005
CreatorsLee, Young-Jun
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format597001 bytes, application/pdf

Page generated in 0.0017 seconds