This thesis analyzes how parallel processing with Graphics Processing Unit (GPU) could be used for massive crowd simulation, not only in terms of rendering but also the computational power that is required for realistic simulation. The extreme population in massive crowd simulation introduces an extra computational load, which is quite difficult to meet by using Central Processing Unit (CPU) resources only. The thesis shows the specific methods and approaches that maximize the throughput of GPU parallel computing, while using GPU as the main processor for massive crowd simulation.
The methodology introduced in this thesis makes it possible to simulate and visualize hundreds of thousands of virtual characters in real-time. In order to achieve two orders of magnitude speedups by using GPU parallel processing, various stream compaction and effective memory access approaches were employed.
To simulate crowd behavior, fuzzy logic functionality on the GPU has been implemented from scratch. This implementation is capable of computing more than half billion fuzzy inferences per second.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12611627/index.pdf |
Date | 01 February 2010 |
Creators | Yilmaz, Erdal |
Contributors | Isler, Veysi |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0017 seconds