Eine Herausforderung der Parallelverarbeitung ist das Erreichen von Skalierbarkeit großer paralleler Anwendungen für verschiedene parallele Systeme. Das zentrale Problem ist, dass die Ausführung einer Anwendung auf einem parallelen System sehr gut sein kann, die Portierung auf ein anderes System in der Regel jedoch zu schlechten Ergebnissen führt.
Durch die Verwendung des Programmiermodells der parallelen Tasks mit Abhängigkeiten kann die Skalierbarkeit für viele parallele Algorithmen
deutlich verbessert werden. Die Programmierung mit parallelen Tasks führt zu Task-Graphen mit Abhängigkeiten zur Darstellung einer parallelen Anwendung, die auch als gemischt-parallele Anwendung bezeichnet wird. Die Grundlage für eine effiziente Abarbeitung einer gemischt-parallelen Anwendung bildet ein geeigneter Schedule, der eine effiziente Abbildung der parallelen Tasks auf die Prozessoren des parallelen Systems vorgibt. Für die Berechnung eines Schedules werden Schedulingalgorithmen eingesetzt.
Ein zentrales Problem bei der Bestimmung eines Schedules für gemischt-parallele Anwendungen besteht darin, dass das Scheduling bereits für Single-Prozessor-Tasks mit Abhängigkeiten und ein paralleles System mit zwei Prozessoren NP-hart ist. Daher existieren lediglich Approximationsalgorithmen und Heuristiken um einen Schedule zu berechnen. Eine Möglichkeit zur Berechnung eines Schedules sind layerbasierte Schedulingalgorithmen. Diese Schedulingalgorithmen bilden zuerst Layer unabhängiger paralleler Tasks und berechnen den Schedule für jeden Layer separat.
Eine Schwachstelle dieser Schedulingalgorithmen ist das Zusammenfügen der einzelnen Schedules zum globalen Schedule. Der vorgestellte Algorithmus Move-blocks bietet eine elegante Möglichkeit das Zusammenfügen zu verbessern. Dies geschieht durch eine Verschmelzung der Schedules aufeinander folgender Layer.
Obwohl eine Vielzahl an Schedulingalgorithmen für gemischt-parallele Anwendungen existiert, gibt es bislang keine umfassende Unterstützung des Schedulings durch Programmierwerkzeuge. Im Besonderen gibt es keine Schedulingumgebung, die eine Vielzahl an Schedulingalgorithmen in sich vereint. Die Vorstellung der flexiblen, komponentenbasierten und erweiterbaren Schedulingumgebung SEParAT ist der zweite Fokus dieser Dissertation. SEParAT unterstützt verschiedene Nutzungsszenarien,
die weit über das reine Scheduling hinausgehen, z.B. den Vergleich von
Schedulingalgorithmen und die Erweiterung und Realisierung neuer Schedulingalgorithmen. Neben der Vorstellung der Nutzungsszenarien werden sowohl die interne Verarbeitung eines Schedulingdurchgangs als auch die komponentenbasierte Softwarearchitektur detailliert vorgestellt.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-64584 |
Date | 25 January 2011 |
Creators | Kunis, Raphael |
Contributors | Technische Universität Chemnitz, Informatik, Prof. Dr. Gudula Rünger, Prof. Dr. Gudula Rünger, Prof. Dr. Wolfram Hardt |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf, text/plain, application/zip |
Page generated in 0.0019 seconds