Return to search

CHEOPS: Das Chemnitzer hybrid-evolutionäre Optimierungssystem

Evolutionäre Algorithmen übertragen den natürlich-biologischen Evolutionsprozess auf die Lösung mathematischer, techn(olog)ischer oder ökonomischer Optimierungsprobleme aus Forschung, Industrie und Wirtschaft. Die als Vorbild dienenden Prinzipien und Mechanismen werden jedoch nicht direkt kopiert, sondern lediglich ihre Wirkungen abstrakt imitiert sowie algorithmisch implementiert, um dann für die jeweilige Aufgabenstellung immer bessere Individuen mittels Computer im Zeitraffer heranzuzüchten und schließlich (fast-)optimale Lösungspunkte aufzufinden. Dabei bedarf es keiner expliziten Richtungsinformation oder sonstiger Wegweiser, um die Züchtung bzw. Suche zielgerichtet zu dirigieren und dann erfolgreich zu konvergieren. Sukzessive orientieren sich Evolutionäre Algorithmen allein anhand von Lösungspunkt-Zielfunktionswert-Paaren, also am Erfolg oder Misserfolg bereits durchgeführter Suchschritte. Aufgrund dieser konzeptuellen Anspruchslosigkeit haben sie dem Selektionsdruck der Praxis standgehalten, viele Anwendungsgebiete erobert und sich als universell einsetzbare Lösungsverfahren / Optimierungswerkzeuge etabliert.

Das für diese Dissertation entwickelte und hier eingehend dokumentierte Chemnitzer hybrid-evolutionäre Optimierungssystem CHEOPS ist konzipiert als leistungsstarker, universeller, anpassungsfähiger und erweiterbarer Evolutionärer Algorithmus zur statischen Parameteroptimierung deterministischer Probleme. Als numerischer Benchmark zur empirischen Beurteilung von Erfolgswahrscheinlichkeit und Fortschrittsgeschwindigkeit ist außerdem eine ausgewogene Schar schwierig zu optimierender mathematischer Testfunktionen zusammengestellt. Dabei sind sie bewusst so konstruiert, dass sie derartige charakteristische Merkmale besitzen, die auch bei praxisrelevanten Optimierungsproblemen oft vorliegen oder zu erwarten sind. Verschiedene topologische Funktionseigenschaften haben tatsächliche oder auch nur vermeintliche Schwierigkeiten bei der Optimierung besonders verdeutlicht. CHEOPS beinhaltet eine Vielzahl an Werkzeugen und Funktion(alität)en, wird aber weiterentwickelt hinsichtlich mehrkriterieller Optimierung sowie hybrider Optimierung als Themengebiete für zukünftige Herausforderungen.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:19148
Date12 June 2009
CreatorsNieländer, N. Ulf
ContributorsKöchel, Peter, Luderer, Bernd, Teich, Tobias, Technische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds