L’objectif principal de cette thèse vise la compréhension et la maitrise des mécanismes physiques menant à l’excitation du mode gyrotropique de vortex magnétique par transfert de spin, et en particulier l’origine des sources de bruit affectant sa dynamique. Ce travail est effectué dans la perspective de parvenir à l’amélioration des propriétés radiofréquences de ces dispositifs appelés Spin Transfer Oscillator.En effet, ces oscillateurs ont l’avantage d’être de taille submicronique (quelques dizaines à quelques centaines de nm), d’être compatibles avec les technologies CMOS et d’être résistants aux radiations. De plus, les mécanismes d’aimantation mis en jeu leur assurent une forte dépendance de la fréquence avec le courant, i.e. une bonne accordabilité, ainsi qu’une réponse dynamique rapide i.e. une agilité élevée. Cependant, différentes questions restent en suspens quant à la possibilité d’améliorer leurs conditions d’oscillations, leur puissance et la cohérence de leurs oscillations.Un premier aspect de mon travail de thèse a été d’étudier l’influence des fluctuations thermiques sur la dynamique entretenue du mode gyrotropique du cœur de vortex. Un des résultats a été de montrer que le bruit de phase du mode gyrotropique résulte majoritairement de fluctuations de phase issues directement des fluctuations thermiques auxquelles s’ajoutent des fluctuations d’amplitude converties en fluctuations de phase. Grâce à un modèle analytique, nous avons pu mettre en évidence le rôle important joué par les non-linéarités des forces agissant sur le vortex. De plus, nous avons pu mesurer les paramètres caractéristiques de l’oscillateur, à savoir, la rapidité à changer sa fréquence mais aussi le facteur de couplage amplitude-phase.La seconde étape de mes travaux a consisté à améliorer les conditions d’obtention de signal rf. Un résultat majeur de ce travail a été l’obtention d’un signal rf puissant en absence de champ magnétique. Les puissances mesurées sont de quelques centaines de µW correspondant à des largeurs de raie faibles allant de quelques centaines de kHz à quelques MHz. Cette spécificité est rendue possible pour une structure complexe de l’oscillateur où la couche magnétique qui polarise en spin le courant a une aimantation perpendiculaire et est différente de la couche de référence pour la magnétorésistance.La troisième étape a été d’optimiser le rendement de l’oscillateur. Un des résultats marquants est que nous avons pu mesurer une puissance rf émise record s’élevant à 3.6 µW, encore jamais obtenue à température ambiante pour les oscillateurs à transfert de spin à base de vortex. Ces fortes puissances résultent du développement de nouvelles jonctions à base de FeB effectués par le groupe de S. Yuasa (AIST, Japon) pour lesquelles l’amélioration de la qualité de la jonction, nous a permis d’obtenir une magnétorésistance atteignant 125% .La faible taille de l’oscillateur a donc un coût qui se paye en termes de bruit de phase. Une solution qui permettrait de résoudre cette limitation et d’améliorer la cohérence des oscillations est la synchronisation mutuelle de plusieurs oscillateurs à transfert de spin au travers des courants rf émis par chacun. Ainsi, la dernière étape de ma thèse a été d’étudier le comportement du mode gyrotropique lorsqu’il est soumis à un courant alternatif. Un résultat important a été de montrer, grâce à une étude expérimentale appuyée sur un modèle analytique, le rôle crucial des non-linéarités et des symétries des forces de synchronisation du mode excité.Ces différents travaux nous ont fournis les outils pour mieux comprendre la dynamique du vortex magnétique et nous ont amené à mettre en place un banc de mesure original pour lequel l’oscillateur se synchronise sur lui-même. En fonction du retard avec lequel le signal émis par l’oscillateur est réinjecté, nous avons pu montrer pour la première fois que la fréquence, la puissance mais aussi la largeur de raie des oscillations peuvent être modulées. / The main goal of this thesis is the understanding of the physical mechanisms and the subsequent control of the properties at the origin of the spin transfer induced magnetic vortex gyrotropic motion in confined systems. In particular the origin of the noise affecting the dynamics has been investigated. This work has been performed with a view to improving the radiofrequency (rf) properties of the so-called Spin Transfer Oscillator (STO).The advantages of such oscillators are their sub-micron size (from few tens to hundreds of nanometres), their compatibility with CMOS technologies and their radiation hardness. Moreover, the magnetization dynamics involved permit a large tunability of frequency as a function of the applied current and a high agility i.e. a fast dynamical response. Nevertheless, several open questions exist regarding the possible optimization of the sustained oscillation conditions and the improvement of the STO power and spectral coherence.The first aspect of my work was to investigate the influence of thermal fluctuations over the sustained vortex core gyrotropic motion. One of the key results of my thesis was to show that the phase noise results from direct phase fluctuations from thermal fluctuations plus amplitude fluctuations converted to phase noise. With an analytical model, we were able to highlight the major role played by the non-linearities of the forces acting on the vortex core. In addition, we were able to measure the characteristic parameters of the oscillator, namely, the speed of frequency response to perturbations as well as the phase-amplitude coupling coefficient.The second important part of my work has been to improve the conditions for obtaining an rf signal. An important result of this work was the measurement of a powerful rf signal in the absence of a magnetic field. The measured powers are a few hundred milliwatts and correspond to low linewidths, ranging from a few hundred kilohertz to a few megahertz. The zero field behaviour was made possible due to the complex structure of the oscillator where the magnetic layer which polarizes the spin current has a perpendicular magnetization, in contrast to the in-plane polarized reference layer.The third step was to optimize the performance of the oscillator. One of the striking results of this thesis is that we measured a record rf output power, up to 3.6 µW, the largest obtained at room temperature for vortex based STOs so far. This high output power results from the development of new FeB based junctions made by the group of Pr. S. Yuasa (AIST, Japan), where the improvement of the quality of the junction allowed us to obtain a magnetoresistance up to 125%.The small size of the oscillator has a cost that is paid in terms of the phase noise. One possible solution that would solve this limitation and enhance the coherence of the oscillations is via mutual synchronization of several STOs through rf currents emitted by each oscillator. Thus, the last stage of my thesis was to study the behaviour of gyrotropic motion when subjected to an alternating current. An important result was to show, through an experimental study in conjunction with an analytical model, the crucial role of the non-linearities and symmetries of the synchronization forces.These various studies have provided us the tools to better understand the dynamics of magnetic vortex and led us to develop an original tester for which the oscillator synchronizes itself with its own rf signal. Depending on the delay at which the oscillator is fed back, we showed for the first time that the frequency, the power and also the linewidth of the oscillations can be modulated.
Identifer | oai:union.ndltd.org:theses.fr/2015PA112082 |
Date | 16 June 2015 |
Creators | Grimaldi, Eva |
Contributors | Paris 11, Cros, Vincent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0021 seconds