Background: Cacao swollen shoot virus (CSSV), Cacao swollen shoot CD virus (CSSCDV), and Cacao swollen shoot Togo A virus (CSSTAV) cause cacao swollen shoot disease (CSSD) in West Africa. During 2000-2003, leaf and shoot-swelling symptoms and rapid tree death were observed in cacao in Cote d'Ivoire and Ghana. Molecular tests showed positive infection in only similar to 50-60% of symptomatic trees, suggesting the possible emergence of an unknown badnavirus. Methods: The DNA virome was determined from symptomatic cacao samples using Illumina-Hi Seq, and sequence accuracy was verified by Sanger sequencing. The resultant 14, and seven previously known, full-length badnaviral genomic and RT-RNase H sequences were analyzed by pairwise distance analysis to resolve species relationships, and by Maximum likelihood (ML) to reconstruct phylogenetic relationships. The viral coding and non-coding sequences, genome organization, and predicted conserved protein domains (CPDs) were identified and characterized at the species level. Results: The 21 CSSD-badnaviral genomes and RT-RNase H sequences shared 70-100% and 72-100% identity, respectively. The RT-RNase H analysis predicted four species, based on an >= 80% species cutoff. The ML genome sequence tree resolved three well-supported clades, with >= 70% bootstrap, whereas, the RT-RNase H phylogeny was poorly resolved, however, both trees grouped CSSD isolates within one large clade, including the newly discovered Cacao red vein virus (CRVV) proposed species. The genome arrangement of the four species consists of four, five, or six predicted open reading frames (ORFs), and the CPDs have similar architectures. By comparison, two New World cacao-infecting badnaviruses encode four ORFs, and harbor CPDs like the West African species. Conclusions: Three previously recognized West African cacao-infecting badnaviral species were identified, and a fourth, previously unidentified species, CRVV, is described for the first time. The CRVV is a suspect causal agent of the rapid decline phenotype, however Koch's Postulates have not been proven. To reconcile viral evolutionary with epidemiology considerations, more detailed information about CSSD-genomic variability is essential. Also, the functional basis for the multiple genome arrangements and subtly distinct CPD architectures among cacao-infecting badnaviruses is poorly understood. New knowledge about functional relationships may help explain the diverse symptomatologies observed in affected cacao trees.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/626087 |
Date | 19 October 2017 |
Creators | Chingandu, Nomatter, Kouakou, Koffie, Aka, Romain, Ameyaw, George, Gutierrez, Osman A., Herrmann, Hans-Werner, Brown, Judith K. |
Contributors | Univ Arizona, Sch Plant Sci |
Publisher | BIOMED CENTRAL LTD |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License. |
Relation | http://virologyj.biomedcentral.com/articles/10.1186/s12985-017-0866-6 |
Page generated in 0.0137 seconds