Due to an increasing awareness of the importance of sustainable energy use, multi-objective optimization problems for upper-level energy systems are continually being developed and improved. This paper focuses on the modeling and optimization of the Helsinki district heating system and establishing the basis for modeling the Finnish power network. The optimization of the district heating system is conducted for a twenty four hour winter demand period. Partial load behavior of the generators is included by introducing non-linear functions for costs, emissions, and the exergetic efficiency. A fuel cost sensitivity analysis is conducted on the system by considering ten combinations of fuel costs based on high, medium, and low prices for each fuel. The solution sets, called Pareto fronts, are evaluated by post-processing techniques in order to determine the best solution from the optimal set. Because units between some of objective functions are non-commensurable, objective values are normalized and weighted. The results indicate that for today\'s fuel prices the best solution includes a dominating usage of natural gas technologies, while if the price of natural gas is higher than other fuels, natural gas technologies are often not included in the best solution. All of the necessary costs, emissions, and operating information is provided for the the Finnish power network in order to employ a multi-objective optimization on the system. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/23096 |
Date | 24 May 2013 |
Creators | Hopkins, Scott Dale |
Contributors | Mechanical Engineering |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds