Energy consumption rates have been dramatically increasing on a global scale within the last few decades. A significant role in this increase is subjected by the recent high temperature levels especially at summer time which caused a rapid increase in the air conditioning demands. Such phenomena can be clearly observed in developing countries, especially those in hot climate regions, where people depend mainly on conventional air conditioning systems. These systems often show poor performance and thus negatively impact the environment which in turn contributes to global warming phenomena. In recent years, the demand for urban or district cooling technologies and networks has been increasing significantly as an alternative to conventional systems due to their higher efficiency and improved ecological impact. However, to obtain an efficient design for district cooling systems is a complex task that requires considering a wide range of cooling technologies, various network layout configuration possibilities, and several energy resources to be integrated. Thus, critical decisions have to be made regarding a variety of opportunities, options and technologies.
The main objective of this thesis is to develop a tool to obtain preliminary design configurations and operation patterns for district cooling energy systems by performing roughly detailed optimizations and further, to introduce a decision-making approach to help decision makers in evaluating the economic aspects and environmental performance of urban cooling systems at an early design stage.
Different aspects of the subject have been investigated in the literature by several researchers. A brief survey of the state of the art was carried out and revealed that mathematical programming models were the most common and successful technique for configuring and designing cooling systems for urban areas. As an outcome of the survey, multi objective optimization models were decided to be utilized to support the decision-making process. Hence, a multi objective optimization model has been developed to address the complicated issue of decision-making when designing a cooling system for an urban area or district. The model aims to optimize several elements of a cooling system such as: cooling network, cooling technologies, capacity and location of system equipment. In addition, various energy resources have been taken into consideration as well as different solar technologies such as: trough solar concentrators, vacuum solar collectors and PV panels. The model was developed based on the mixed integer linear programming method (MILP) and implemented using GAMS language.
Two case studies were investigated using the developed model. The first case study consists of seven buildings representing a residential district while the second case study was a university campus district dominated by non-residential buildings. The study was carried out for several groups of scenarios investigating certain design parameters and operation conditions such as: Available area, production plant location, cold storage location constraints, piping prices, investment cost, constant and variable electricity tariffs, solar energy integration policy, waste heat availability, load shifting strategies, and the effect of outdoor temperature in hot regions on the district cooling system performance. The investigation consisted of three stages, with total annual cost and CO2 emissions being the first and second single objective optimization stages. The third stage was a multi objective optimization combining the earlier two single objectives. Later on, non-dominated solutions, i.e. Pareto solutions, were generated by obtaining several multi objective optimization scenarios based on the decision-makers’ preferences. Eventually, a decision-making approach was developed to help decision-makers in selecting a specific solution that best fits the designers’ or decision makers’ desires, based on the difference between the Utopia and Nadir values, i.e. total annual cost and CO2 emissions obtained at the single optimization stages. / Die Energieverbrauchsraten haben in den letzten Jahrzehnten auf globaler Ebene dramatisch zugenommen. Diese Erhöhung ist zu einem großen Teil in den jüngst hohen Temperaturniveaus, vor allem in der Sommerzeit, begründet, die einen starken Anstieg der Nachfrage nach Klimaanlagen verursachen. Solche Ereignisse sind deutlich in Entwicklungsländern zu beobachten, vor allem in heißen Klimaregionen, wo Menschen vor allem konventionelle Klimaanlagensysteme benutzen. Diese Systeme verfügen meist über eine ineffiziente Leistungsfähigkeit und wirken sich somit negativ auf die Umwelt aus, was wiederum zur globalen Erwärmung beiträgt. In den letzten Jahren ist die Nachfrage nach Stadt- oder Fernkältetechnologien und -Netzwerken als Alternative zu konventionellen Systemen aufgrund ihrer höheren Effizienz und besseren ökologischen Verträglichkeit satrk gestiegen. Ein effizientes Design für Fernkühlsysteme zu erhalten, ist allerdings eine komplexe Aufgabe, die die Integration einer breite Palette von Kühltechnologien, verschiedener Konfigurationsmöglichkeiten von Netzwerk-Layouts und unterschiedlicher Energiequellen erfordert. Hierfür ist das Treffen kritischer Entscheidungen hinsichtlich einer Vielzahl von Möglichkeiten, Optionen und Technologien unabdingbar.
Das Hauptziel dieser Arbeit ist es, ein Werkzeug zu entwickeln, das vorläufige Design-Konfigurationen und Betriebsmuster für Fernkälteenergiesysteme liefert, indem aureichend detaillierte Optimierungen durchgeführt werden. Zudem soll auch ein Ansatz zur Entscheidungsfindung vorgestellt werden, der Entscheidungsträger in einem frühen Planungsstadium bei der Bewertung städtischer Kühlungssysteme hinsichtlich der wirtschaftlichen Aspekte und Umweltleistung unterstützen soll.
Unterschiedliche Aspekte dieser Problemstellung wurden in der Literatur von verschiedenen Forschern untersucht. Eine kurze Analyse des derzeitigen Stands der Technik ergab, dass mathematische Programmiermodelle die am weitesten verbreitete und erfolgreichste Methode für die Konfiguration und Gestaltung von Kühlsystemen für städtische Gebiete sind. Ein weiteres Ergebnis der Analyse war die Festlegung von Mehrzieloptimierungs-Modelles für die Unterstützung des Entscheidungsprozesses. Darauf basierend wurde im Rahmen der vorliegenden Arbeit ein Mehrzieloptimierungs-Modell für die Lösung des komplexen Entscheidungsfindungsprozesses bei der Gestaltung eines Kühlsystems für ein Stadtgebiet oder einen Bezirk entwickelt. Das Modell zielt darauf ab, mehrere Elemente des Kühlsystems zu optimieren, wie beispielsweise Kühlnetzwerke, Kühltechnologien sowie Kapazität und Lage der Systemtechnik. Zusätzlich werden verschiedene Energiequellen, auch solare wie Solarkonzentratoren, Vakuum-Solarkollektoren und PV-Module, berücksichtigt. Das Modell wurde auf Basis der gemischt-ganzzahlig linearen Optimierung (MILP) entwickelt und in GAMS Sprache implementiert.
Zwei Fallstudien wurden mit dem entwickelten Modell untersucht. Die erste Fallstudie besteht aus sieben Gebäuden, die ein Wohnviertel darstellen, während die zweite Fallstudie einen Universitätscampus dominiert von Nichtwohngebäuden repräsentiert. Die Untersuchung wurde für mehrere Gruppen von Szenarien durchgeführt, wobei bestimmte Designparameter und Betriebsbedingungen überprüft werden, wie zum Beispiel die zur Verfügung stehende Fläche, Lage der Kühlanlage, örtliche Restriktionen der Kältespeicherung, Rohrpreise, Investitionskosten, konstante und variable Stromtarife, Strategie zur Einbindung der Solarenergie, Verfügbarkeit von Abwärme, Strategien der Lastenverschiebung, und die Wirkung der Außentemperatur in heißen Regionen auf die Leistung des Kühlsystems. Die Untersuchung bestand aus drei Stufen, wobei die jährlichen Gesamtkosten und die CO2-Emissionen die erste und zweite Einzelzieloptimierungsstufe darstellen. Die dritte Stufe war ein Pareto-Optimierung, die die beiden ersten Ziele kombiniert. Im Anschluss wurden nicht-dominante Lösungen, also Pareto-Lösungen, erzeugt, indem mehrere Pareto-Optimierungs-Szenarien basierend auf den Präferenzen der Entscheidungsträger abgebildet wurden. Schließlich wurde ein Ansatz zur Entscheidungsfindung entwickelt, um Entscheidungsträger bei der Auswahl einer bestimmten Lösung zu unterstützen, die am besten den Präferenzen des Planers oder des Entscheidungsträgers enstpricht, basierend auf der Differenz der Utopia und Nadir Werte, d.h. der jährlichen Gesamtkosten und CO2-Emissionen, die Ergebnis der einzelnen Optimierungsstufen sind.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29703 |
Date | 29 June 2016 |
Creators | Kamali, Aslan |
Contributors | Felsmann, Clemens, Antwan, Nazar, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0053 seconds