The effect of 2,4,6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)- benzenesulfonamide (m-3M3FBS), a presumed phospholipase C activator, on cytosolic free Ca2+ concentrations ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells and OC2 human oral cancer cells was unclear. This study explored whether m-3M3FBS changed basal [Ca2+]i levels in suspended MDCK and OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent dye. m-3M3FBS at concentrations between 0.1-20 £gM increased [Ca2+]i in a concentration-dependent manner in MDCK cells, however in OC2 cells, m-3M3FBS at concentrations between 10-60 £gM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signals were reduced partly by removing extracellular Ca2+ in the two cell types. m-3M3FBS-induced Ca2+ influx was inhibited by the store-operated Ca2+ channel blockers nifedipine, econazole and SK&F96365, and by the phospholipase A2 inhibitor aristolochic acid. In Ca2+-free medium, m-3M3FBS pretreatment abolished the [Ca2+]i rise induced by the endoplasmic reticulum Ca2+ pump inhibitors thapsigargin, cyclopiazonic acid or 2,5-di-tert-butylhydroquinone (BHQ). Conversely, pretreatment with thapsigargin, cyclopiazonic acid or BHQ partly reduced m-3M3FBS-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not alter m-3M3FBS-induced [Ca2+]i rise. Collectively, in MDCK and OC2 cells, m-3M3FBS induced [Ca2+]i rises by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via store-operated Ca2+ channels and other unidentified Ca2+ channels. Additionally, 5-100 £gM of m-3M3FBS killed cells in a concentration-dependent manner in OC2 cells. The cytotoxic effect of m-3M3FBS was not reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane- N,N,N',N'-tetraacetic acid (BAPTA). Propidium iodide staining data suggest that m-3M3FBS (20 or 50 £gM) induced apoptosis in a Ca2+-independent manner.
We were also interested in knowing whether BAPTA suppressed cell death during oxidative stress in MDCK cells. BAPTA loading altered tBHP (tert-butyl hydroperoxide) and H2O2-induced cell death in a concentration-dependent manner. This suggests that the cell death induced by tBHP and H2O2 appears to be Ca2+-dependent in MDCK cells. The tBHP and H2O2-induced cell death was not suppressed by 2 £gM U73122 (PLC inhibitor), 50 £gM zVAD-fmk (caspase inhibitor), 2 £gM cyclosporin A (a potent inhibitor of the MPTP), 20 £gM PD98059 (ERK inhibitor) or 2 £gM SP600125 (JNK inhibitor). This suggests that the tBHP and H2O2-induced MDCK cells death was not via the PLC, MPTP, caspase, ERK or JNK pathways. Propidium iodide staining, caspase-3 activity assay and cell morphology data suggest that tBHP and H2O2-induced cell death was necrosis, not via apoptosis, and the cell death appears to be caspase-independent and Ca2+-dependent.
The effect of the antidepressant paroxetine on [Ca2+]i in OC2 human oral cancer cells is unclear. This study also explored whether paroxetine changed basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent dye. Paroxetine at concentrations between 100-1000 £gM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 50% by removing extracellular Ca2+. Paroxetine-induced Ca2+ influx was inhibited by the store-operated Ca2+ channel blockers nifedipine, econazole and SK&F96365, the phospholipase A2 inhibitor aristolochic acid, and protein kinase C modulators. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished paroxetine¡Vinduced [Ca2+]i rise. Inhibition of PLC with U73122 did not alter paroxetine-induced [Ca2+]i rise. Paroxetine at 10-50 £gM induced cell death in a concentration-dependent manner. The death was not reversed when cytosolic Ca2+ was chelated with BAPTA. Propidium iodide staining suggests that apoptosis played a role in the death. Collectively, in OC2 cells, paroxetine induced [Ca2+]i rise by causing PLC-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via store-operated Ca2+ channels in a manner regulated by protein kinase C and phospholipase A2. Paroxetine also induced cell death in a Ca2+-independent manner.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0804111-200936 |
Date | 04 August 2011 |
Creators | Fang, Yi-chien |
Contributors | Chung-Ren Jan, Chen-Fu Shaw, Hsueh-Wen Chang, Ko-Long Lin, Chen-Chih Kao |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0804111-200936 |
Rights | user_define, Copyright information available at source archive |
Page generated in 0.0027 seconds