In this thesis, we discuss a geometric construction analogous to the Ward correspondence for the KP equations. We propose a Dirac operator based on the inverse scattering transform for the KP-II equation and discuss the similarities and differences to the Ward correspondence. We also consider the KP-I equation, describing a geometric construction for a certain class of solutions. We also discuss the general inverse scattering of the equation, how this is related to the KP-II equation and the problems with describing a single geometric construction that incorporates both equations. We also consider the Davey-Stewartson equations, which have a similar behaviour. We demonstrate explicitly the problems of localising the theory with generic boundary conditions. We also present a reformulation of the Dirac operator and demonstrate a duality between the Dirac operator and the first Lax operator for the DS-II equations. We then proceed to generalise the Dirac operator construction to generate other integrable systems. These include the mKP and Ishimori equations, and an extension to the KP and mKP hierarchies.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:301766 |
Date | January 1999 |
Creators | Barge, S. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:d0204f58-525b-4b43-bcd8-aae13978e07b : http://eprints.maths.ox.ac.uk/33/ |
Page generated in 0.002 seconds