Return to search

Modelo linear parcial generalizado simétrico / Linear Model Partial Generalized Symmetric

Neste trabalho foi proposto o modelo linear parcial generalizado simétrico, com base nos modelos lineares parciais generalizados e nos modelos lineares simétricos, em que a variável resposta segue uma distribuição que pertence à família de distribuições simétricas, considerando um preditor linear que possui uma parte paramétrica e uma não paramétrica. Algumas distribuições que pertencem a essa classe são as distribuições: Normal, t-Student, Exponencial potência, Slash e Hiperbólica, dentre outras. Uma breve revisão dos conceitos utilizados ao longo do trabalho foram apresentados, a saber: análise residual, influência local, parâmetro de suavização, spline, spline cúbico, spline cúbico natural e algoritmo backfitting, dentre outros. Além disso, é apresentada uma breve teoria dos modelos GAMLSS (modelos aditivos generalizados para posição, escala e forma). Os modelos foram ajustados utilizando o pacote gamlss disponível no software livre R. A seleção de modelos foi baseada no critério de Akaike (AIC). Finalmente, uma aplicação é apresentada com base em um conjunto de dados reais da área financeira do Chile. / In this work we propose the symmetric generalized partial linear model, based on the generalized partial linear models and symmetric linear models, that is, the response variable follows a distribution that belongs to the symmetric distribution family, considering a linear predictor that has a parametric and a non-parametric component. Some distributions that belong to this class are distributions: Normal, t-Student, Power Exponential, Slash and Hyperbolic among others. A brief review of the concepts used throughout the work was presented, namely: residual analysis, local influence, smoothing parameter, spline, cubic spline, natural cubic spline and backfitting algorithm, among others. In addition, a brief theory of GAMLSS models is presented (generalized additive models for position, scale and shape). The models were adjusted using the package gamlss available in the free R software. The model selection was based on the Akaike criterion (AIC). Finally, an application is presented based on a set of real data from Chile\'s financial area.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-26072017-105153
Date06 February 2017
CreatorsVasconcelos, Julio Cezar Souza
ContributorsLobos, Cristian Marcelo Villegas
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0025 seconds