Return to search

Predicting The Effect Of Hydrophobicity Surface On Binding Affinity Of Pcp-like Compounds Using Machine Learning Methods

This study aims to predict the binding affinity of the PCP-like compounds by means of molecular hydrophobicity. Molecular hydrophobicity is an important property which affects the binding affinity of molecules. The values of molecular hydrophobicity of molecules are obtained on three-dimensional coordinate system. Our aim is to reduce the number of points on the hydrophobicity surface of the molecules. This is modeled by using self organizing maps (SOM) and k-means clustering. The feature sets obtained from SOM and k-means clustering
are used in order to predict binding affinity of molecules individually. Support vector regression and partial least squares regression are used for prediction.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613215/index.pdf
Date01 April 2011
CreatorsYoldas, Mine
ContributorsAlpaslan, Ferda Nur
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0013 seconds