De nos jours, il y a une demande croissante pour fournir de l'information temps réel à partir de l'environnement, e.g. état infectieux de maladies, force du signal, conditions de circulation, qualité de l'air. La prolifération des dispositifs de capteurs et la mobilité des personnes font de la Mobile Collaborative Sensing (MCS) un moyen efficace de détecter et collecter l'information à un faible coût. Dans MCS, au lieu de déployer des capteurs statiques dans une zone, les personnes disposant d'appareils mobiles jouent le rôle de capteurs mobiles. En général, une application MCS exige que l'appareil de chacun ait la capacité d'effectuer la détection et retourne les résultats à un serveur central, mais également de collaborer avec d'autres dispositifs. Pour que les résultats puissent représenter l'information physique d'une région cible et convenir, quel type de données peut être utilisé et quel type d'information doit être inclus dans les données collectées? Les données spatio-temporelles peuvent être utilisées par des applications pour bien représenter la région cible. Dans des applications différentes, l'information de localisation et de temps sont 2 types d'information communes, et en les utilisant la région cible d'une application est sous surveillance complète du temps et de l'espace. Différentes applications nécessitent de l'information différente pour atteindre des objectifs différents. E.g. dans cette thèse: i- MCS-Locating application: l'information de résistance du signal doit être incluse dans les données détectées par des dispositifs mobiles à partir d'émetteurs de signaux ; ii- MCS-Prédiction application : la relation entre les cas d'infection et les cas infectés doit être incluse dans les données par les dispositifs mobiles provenant des zones de flambée de la maladie ; iii- MCS-Routing application : l'information routière en temps réel provenant de différentes routes de circulation doit être incluse dans les données détectées par des dispositifs embarqués. Avec la détection de l'information physique d'une région cible, et la mise en interaction des dispositifs, 3 thèmes d'optimisation basés sur la détection sont étudiés et 4 travaux de recherche menés: -Mobile Collaboratif Détection Cadre : un cadre mobile de détection collaborative est conçu pour faciliter la coopérativité de la collecte, du partage et de l'analyse des données. Les données sont collectées à partir de sources et de points temporels différents. Pour le déploiement du cadre dans les applications, les défis clés pertinents et les problèmes ouverts sont discutés. -MCS-Locating : l'algorithme LiCS (Locating in Collaborative Sensing based Data Space) est proposé pour atteindre la localisation de la cible. LiCS utilise la puissance du signal reçu dans tous les périphériques sans fil comme empreintes digitales de localisation pour les différents emplacements. De sorte LiCS peut être directement pris en charge par l'infrastructure sans fil standard. Il utilise des données de trace d'appareils mobiles d'individus, et un modèle d'estimation d'emplacement. Il forme le modèle d'estimation de localisation en utilisant les données de trace pour atteindre la localisation de la cible collaborative. Cette collaboration entre périphériques est au niveau des données et est supportée par un modèle. -MCS-Prédiction: un modèle de reconnaissance est conçu pour acquérir dynamiquement la connaissance de structure de la RCN pertinente pendant la propagation de la maladie. Sur ce modèle, un algorithme de prédiction est proposé pour prédire le paramètre R. i.e. le nombre de reproduction qui est utilisé pour quantifier la dynamique de la maladie pendant sa propagation. -MCS-Routing : un algorithme de navigation écologique ‘eRouting’ est conçu en combinant l'information de trafic temps réel et un modèle d'énergie/émission basé sur des facteurs représentatifs. Sur la base de l'infrastructure standard d'un système de trafic intelligent, l'information sur le trafic est collectée / Nowadays, there is an increasing demand to provide real-time information from the environment, e.g., the infection status of infectious diseases, signal strength, traffic conditions, and air quality, to citizens in urban areas for various purposes. The proliferation of sensor-equipped devices and the mobility of people are making Mobile Collaborative Sensing (MCS) an effective way to sense and collect information at a low deployment cost. In MCS, instead of just deploying static sensors in an interested area, people with mobile devices play the role of mobile sensors to sense the information of their surroundings, and the communication network (3G, WiFi, etc.) is used to transfer data for MCS applications. Typically, a MCS application not only requires each participant's mobile device to possess the capability of performing sensing and returning sensed results to a central server, but also requires to collaborate with other mobile and static devices. In order to make sensed results well represent the physical information of a target region, and well be suitable to a certain application, what kind of data can be used for different applications, and what kind of information needs to be included into the collected sensing data? Spatio-temporal data can be used by different applications to well represent the target region. In different applications, location and time information is two kinds of common information, and by using such information, the target region of an application is under comprehensive monitoring from the view of time and space. Different applications require different information to achieve different sensing purposes. E.g. in this thesis: i- MCS-Locating application: signal strength information needs to be included into the sensed data by mobile devices from signal transmitters; ii- MCS-Prediction application: the relationship between infecting and infected cases needs to be included into the sensed data by mobile devices from disease outbreak areas; iii- MCS-Routing application: real-time traffic and road information from different traffic roads, e.g., traffic velocity and road gradient, needs to be included into the sensed data by road-embedded and vehicle-mounted devices. With sensing the physical information of a target region, and making mobile and static devices collaborate with each other in mind, in this thesis three sensing based optimization applications are studied, and following four research works are conducted: - a MCS Framework is designed to facilitate the cooperativity of data collection, sharing, and analysis among different devices. Data is collected from different sources and time points. For deploying the framework into applications, relevant key challenges and open issues are discussed. - MCS-Locating: an algorithm LiCS (Locating in Collaborative Sensing based Data Space) is proposed to achieve target locating. It uses Received Signal Strength that exists in any wireless devices as location fingerprints to differentiate different locations, so it can be directly supported by off-the-shelf wireless infrastructure. LiCS uses trace data from individuals' mobile devices, and a location estimation model. It trains the location estimation model by using the trace data to achieve collaborative target locating. Such collaboration between different devices is data-level, and model-supported. - MCS-Prediction: a recognition model is designed to dynamically acquire the structure knowledge of the relevant RCN during disease spread. On the basis of this model, a prediction algorithm is proposed to predict the parameter R. R is the reproductive number which is used to quantify the disease dynamics during disease spread. - MCS-Routing: an eco-friendly navigation algorithm, eRouting, is designed by combining real-time traffic information and a representative factor based energy/emission model. Based on the off-the-shelf infrastructure of an intelligent traffic system, the traffic information is collected
Identifer | oai:union.ndltd.org:theses.fr/2017TELE0016 |
Date | 12 July 2017 |
Creators | Chen, Yuanfang |
Contributors | Evry, Institut national des télécommunications, Crespi, Noël |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds