We study the buckling of an oil-water interface populated by micron-sized latex particles using a Langmuir trough. We extend pre-existing results to the micron-range with different capillary length and compare the experimental data to the existing theoretical framework. An unexpected trend for the dominant wavelength of buckling is observed, suggesting that there is a transition between regimes in the micron-range. A mechanism for the new regime is proposed. Cascading is reported, as well as novel kinds of transition between wavelengths within the same particle raft. Lastly, the effect of compression on the macroscopic arrangement of particles is investigated, as well as its effect on the buckling wavelength.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-1084 |
Date | 07 November 2014 |
Creators | Dias Kassuga, Theo |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses |
Page generated in 0.0021 seconds