<p>The object of this thesis is to provide a MATLAB framework for nonlinear filtering in general, and particle filtering in particular. This is done by using the object-oriented programming paradigm, resulting in truly expandable code. Three types of discrete and nonlinear state-space models are supported by default, as well as three filter algorithms: the Extended Kalman Filter and the SIS and SIR particle filters. Symbolic expressions are differentiated automatically, which allows for comfortable EKF filtering. A graphical user interface is also provided to make the process of filtering even more convenient. By implementing a specified interface, programming new classes for use within the framework is easy and guidelines for this are presented.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-5190 |
Date | January 2005 |
Creators | Rosén, Jakob |
Publisher | Linköping University, Department of Electrical Engineering, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0022 seconds