Return to search

Structure and Processing Relations in Ni-W Amorphous Particle Strengthened Ni Matrix Composites

Reinforcing metals with compositionally similar amorphous particles has been found to create composites with good interfacial bonding. It is conceivable that significant additional strengthening in amorphous reinforced composites can be realized by creating high-aspect ratio reinforcements; attritor milling holds promise in this regard. In this work, mechanical alloying was used to produce equimolar Ni-W powder that became a composite of amorphous Ni-W with undissolved W crystallites. A mixture of nickel powder and ten volume percent amorphous Ni-W powder was blended by attritor milling for either one or three hours, compacted by combustion-driven compaction and sintered for up to fifty hours at 600ºC. Prolonged times at elevated temperatures led to crystallization of the amorphous reinforcement particles and dissolution of tungsten into the matrix. Vickers macrohardness tests on the sintered composites yielded lower-than-expected values. Microscopy after hardness testing revealed sliding of particles at their boundaries, indicating poor bonding between them. It is believed that the sintering process was compromised by contamination from organic vapor present in the tube furnace used. While attritor milling effected smaller reinforcement particles, the small increase in aspect ratio would likely have been insufficient to cause significant strengthening by shear load transfer. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/36084
Date06 January 2009
CreatorsZeagler, Andrew
ContributorsMaterials Science and Engineering, Aning, Alexander O., Schultz, Jeffery P., Reynolds, William T. Jr.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationZeagler-Thesis.pdf

Page generated in 0.0017 seconds