Return to search

Quelques propositions pour la comparaison de partitions non strictes / Some proposals for comparison of soft partitions

Cette thèse est consacrée au problème de la comparaison de deux partitions non strictes (floues/probabilistes, possibilistes) d’un même ensemble d’individus en plusieurs clusters. Sa résolution repose sur la définition formelle de mesures de concordance reprenant les principes des mesures historiques développées pour la comparaison de partitions strictes et trouve son application dans des domaines variés tels que la biologie, le traitement d’images, la classification automatique. Selon qu’elles s’attachent à observer les relations entre les individus décrites par chacune des partitions ou à quantifier les similitudes entre les clusters qui composent ces partitions, nous distinguons deux grandes familles de mesures pour lesquelles la notion même d’accord entre partitions diffère, et proposons d’en caractériser les représentants selon un même ensemble de propriétés formelles et informelles. De ce point de vue, les mesures sont aussi qualifiées selon la nature des partitions comparées. Une étude des multiples constructions sur lesquelles reposent les mesures de la littérature vient compléter notre taxonomie. Nous proposons trois nouvelles mesures de comparaison non strictes tirant profit de l’état de l’art. La première est une extension d’une approche stricte tandis que les deux autres reposent sur des approches dite natives, l’une orientée individus, l’autre orientée clusters, spécifiquement conçues pour la comparaison de partitions non strictes. Nos propositions sont comparées à celles de la littérature selon un plan d’expérience choisi pour couvrir les divers aspects de la problématique. Les résultats présentés montrent l’intérêt des propositions pour le thème de recherche qu’est la comparaison de partitions. Enfin, nous ouvrons de nouvelles perspectives en proposant les prémisses d’un cadre qui unifie les principales mesures non strictes orientées individus. / This thesis is dedicated to the problem of comparing two soft (fuzzy/ probabilistic, possibilistic) partitions of a same set of individuals into several clusters. Its solution stands on the formal definition of concordance measures based on the principles of historical measures developped for comparing strict partitions and can be used invarious fields such as biology, image processing and clustering. Depending on whether they focus on the observation of the relations between the individuals described by each partition or on the quantization of the similarities between the clusters composing those partitions, we distinguish two main families for which the very notion of concordance between partitions differs, and we propose to characterize their representatives according to a same set of formal and informal properties. From that point of view, the measures are also qualified according to the nature of the compared partitions. A study of the multiple constructions on which the measures of the literature lie completes our taxonomy. We propose three new soft comparison measures taking benefits of the state of art. The first one is an extension of a strict approach, while the two others lie on native approaches, one individual-wise oriented, the other cluster-wise, both specifically defined to compare soft partitions. Our propositions are compared to the existing measures of the literature according to a set of experimentations chosen to cover the various issues of the problem. The given results clearly show how relevant our measures are. Finally we open new perspectives by proposing the premises of a new framework unifying most of the individual-wise oriented measures.

Identiferoai:union.ndltd.org:theses.fr/2012LAROS382
Date06 December 2012
CreatorsQuéré, Romain
ContributorsLa Rochelle, Frélicot, Carl
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0095 seconds