Les réseaux domestiques sont confrontés à une évolution continue et deviennent de plus en plus complexes. Leur complexité a évolué selon deux dimensions interdépendantes. D'une part, la topologie du réseau domestique devient plus complexe avec la multiplication des équipements et des technologies de connectivité. D'autre part, l'ensemble des services accessibles via le réseau domestique ne cesse de s’élargir. Un tel contexte a rendu la gestion du réseau domestique plus difficile pour les Fournisseurs d’Accès Internet (FAI) et les utilisateurs finaux. Dans ce manuscrit, nous nous concentrons sur la deuxième dimension de la complexité décrite ci-dessus liée au trafic circulant depuis/vers le réseau domestique. Notre première contribution consiste à proposer une architecture pour la supervision du trafic dans les réseaux domestiques. Nous fournissons une étude comparative de certains outils open source existants. Ensuite, nous effectuons une évaluation de performances expérimentale d’un sous ensemble des processus impliqués dans notre architecture. Sur la base des résultats obtenus, nous discutons les limites et les possibilités de déploiement de ce type de solution. Dans notre deuxième contribution, nous présentons notre analyse à large échelle des usages et du trafic résidentiel basée sur une trace de trafic réelle impliquant plus de 34 000 clients. Premièrement, nous présentons notre méthode de collecte et de traitement des données. Deuxièmement, nous présentons nos observations statistiques vis-à-vis des différentes couches de l’architecture Internet. Ensuite, nous effectuons une analyse subjective auprès de 645 clients résidentiels. Enfin, nos résultats fournissent une synthèse complète des usages et des caractéristiques des applications résidentielles. Dans notre troisième contribution, nous proposons une nouvelle méthode pour la classification en temps réel du trafic résidentiel. Notre méthode, laquelle est basée sur l’utilisation d’un algorithme d’apprentissage statistique de type C5.0, vise à combler les carences identifiées dans la littérature. Ensuite, nous détaillons notre implémentation d’une sonde légère sur un prototype de passerelle résidentielle capable de capturer, de suivre et d'identifier d’une manière fine les applications actives dans le réseau domestique. Cette implémentation nous permet, en outre, de valider nos principes de conception via un banc d'essai réaliste mis en place à cet effet. Les résultats obtenus indiquent que notre solution est efficace et faisable. / Home networks are facing a continuous evolution and are becoming more and more complex. Their complexity has evolved according to two interrelated dimensions. On the one hand, the home network topology (devices and connectivity technologies) tends to produce more complex configurations. On the other hand, the set of services accessed through the home network is growing in a tremendous fashion. Such context has made the home network management more challenging for both Internet Service Provider (ISP) and end-users. In this dissertation, we focus on the traffic dimension of the above described complexity. Our first contribution consists on proposing an architecture for traffic monitoring in home networks. We provide a comparative study of some existing open source tools. Then, we perform a testbed evaluation of the main software components implied in our architecture. Based on the experiments results, we discuss several deployment limits and possibilities. In our second contribution, we conduct a residential traffic and usages analysis based on real trace involving more than 34 000 customers. First, we present our data collection and processing methodology. Second, we present our findings with respect to the different layers of the TCP/IP protocol stack characteristics. Then, we perform a subjective analysis across 645 of residential customers. The results of both evaluations provide a complete synthesis of residential usage patterns and applications characteristics. In our third contribution, we propose a novel scheme for real-time residential traffic classification. Our scheme, which is based on a machine learning approach called C5.0, aims to fulfil the lacks identified in the literature. At this aim, our algorithm is evaluated using several traffic inputs. Then, we detail how we implemented a lightweight probe able to capture, track and identify finely applications running in the home network. This implementation allowed us to validate our designing principles upon realistic test conditions. The obtained results show clearly the efficiency and feasibility of our solution.
Identifer | oai:union.ndltd.org:theses.fr/2017LAROS035 |
Date | 15 December 2017 |
Creators | Aouini, Zied |
Contributors | La Rochelle, Ghamri Doudane, Mohamed Yacine |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds