Micro-direct methanol fuel cells (micro-DMFC) can be the power supply solution for the next generation of handheld devices. The applications of the micro-DMFCs require them to have high compactness, high performance, light weight, and long life. The major goal of this research project is to enhance the volumetric power density of direct methanol fuel cells (DMFCs). A performance roadmap has been formulated and showed that patterning the planar membrane electrode assembly (MEA) to 2-D and 3-D corrugated manifolds can greatly increase the power generation with very modest overall volume increases. In this project, different manufacturing processes for patterning MEAs with corrugations have been investigated. A folding process was selected to form 2D triangular corrugations on MEAs for experimental validations of the performance prediction. The experimental results show that the volumetric power densities of the corrugated MEAs have improved by about 25% compared to the planar MEAs, which is lower than the expected performance enhancement. ABAQUS software was used to simulate the manufacturing process and identify the causes of deformations during manufacture. Experimental analysis methods like impedance analysis and 4 point-probes were used to quantify the performance loss and microstructure alteration during the forming process. A model was proposed to relate the expected performance of corrugated MEAs to manufacturing process variables. Finally, different stacking configurations and issues related to cell stacking for corrugated MEAs are also investigated.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/11522 |
Date | 13 June 2006 |
Creators | Tse, Laam Angela |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | 1579323 bytes, application/pdf |
Page generated in 0.0018 seconds