Return to search

Low-frequency acoustic classification of methane hydrates

Methane hydrates are naturally-occurring ice-like substances found in permafrost and in ocean sediments along continental shelves. These compounds are often the source of cold seeps—plumes which vent methane into aquatic environments, and may subsequently release the potent greenhouse gas into the atmosphere. Methane hydrates and methane gas seeps are of particular interest both for their potential as an energy source and for their possible contribution to climate change. In an effort to improve location of hydrates through the use of seismic surveys and echo-sounding technology, this work aims to describe the low-frequency (10 Hz to 10 kHz) acoustic behavior of methane gas bubbles and methane hydrates in water under simulated ocean-floor conditions of low temperatures and high pressures. Products of the experiments and analysis presented in this thesis include (a) passive acoustic techniques for measurement of gas flux from underwater seeps, (b) a modified form of Wood's model of low-frequency sound propagation through a bubbly liquid containing real gas, and (c) low-frequency measurements of bulk moduli and dissociation pressures of four natural samples of methane hydrates. Experimental procedures and results are presented, along with analytical and numerical models which support the findings. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-12-2632
Date16 February 2011
CreatorsGreene, Chad Allen
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.0024 seconds