We comprehensively investigated the concentration effect of dispersed single-walled carbon nanotubes (SWCNTs) in polymer films for being a saturable absorber (SA) to stabilize the mode locking performance of the Erbium-doped fiber laser (EDFL) pulse through the diagnosis of its nonlinear properties of SA. The measured modulation depth was 1 to 4.5% as the thickness increased from 18 to 265 £gm. We obtained the stable pulse of the mode-locked EDFL (MLEDFL) when the full-width half-maximum (FWHM) decreased from 3.43 to 2.02 ps as the concentrations of SWCNTs SA increased from 0.125 to 0.5 wt%. At constant concentration of 0.125 wt%, the similar pulse shortening effect of the MLEDFL was also observed when the FWHM decreased from 3.43 to 1.85 ps was the thickness of SWCNTs SA increased from 8 to 100 £gm.
In EDFL system, we vary group-velocity dispersion (GVD) with different cavity length to achieve optical pulse compression. We got the shortest pulsewidth was 713 fs, and the time-bandwidth product (TBP) was 0.345. An in-depth study on the stable mode-locked pulse formation employing SWCNTs SA, it is possible to fabricate the SWCNT films for use in high performance MLEDFL and utilization of many other low-cost nanodevices.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0720110-121555 |
Date | 20 July 2010 |
Creators | Chen, Xi-zong |
Contributors | Chao-Yung Yeh, Gong-Ru Lin, Chao-Kuei Lee, Jiang-Jen Lin, Wood-Hi Cheng |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720110-121555 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0019 seconds