Solar chimney is an important passive design strategy to maximize solar gain to enhance buoyancy effect for achieving adequate air flow rate and a desired level of thermal comfort inside a building. Therefore, solar chimney has the potential advantages over mechanical ventilation systems in terms of energy requirement, economic and environmental benefits. The main aim of this project is to study the technical feasibility of a solar chimney incorporating latent heat storage (LHS) system for domestic heating and cooling applications. The research work carried out and reported in this thesis includes: the development of a detailed theoretical model to calculate the phase change material (PCM) mass for solar chimney under specific climatic condition, the development of a CFD model to optimise the channel depth and the inlet and outlet sizes for the solar chimney geometry, experimental and numerical investigations of the thermal performance of the proposed system using a prototype set-up, a parametric study on the proposed system to identify significant parameters that affect the system performance was carried out by using the verified numerical model. The numerical and experimental study showed that the numerical model has the ability to calculate the PCM mass for the proposed system for the given weather conditions. The optimum PCM should be selected on the basis of its melting temperature, rather than its other properties such as latent heat. The experimental work on the thermal performance of the proposed system has been carried out. The results indicated that the LHS based solar chimney is technically viable. The outlet air temperature and the air flow rate varied within a small range during phase change transition period which are important for a solar air heating system. A numerical model was developed to reproduce the experimental conditions in terms of closed mode and open mode. The model results were in a close agreement with the experimental results particularly the simulated results for the discharging process. With the verified model, a comprehensive parametric analysis intended to optimise the thermal performance of proposed the system was performed. The results analysed are quantified in terms of charging/discharging time of the PCM, temperature difference between outlet air and inlet air of the solar chimney, and mass flow rate of the chimney, which are the most important quantities of the proposed system.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:629989 |
Date | January 2013 |
Creators | Li, Y. |
Publisher | Coventry University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://curve.coventry.ac.uk/open/items/0bca9412-8b49-4d3c-84e5-453e315d4c6b/1 |
Page generated in 0.0037 seconds