Cette thèse présente la construction de courbes tropicales réelles dans R^3 dont la projectivisation, qui est un entrelacs projectif dans IRP^3, est constituée de 2 composantes, I'une étant isotope à un noeud donné au départ. Dans le cas de certains noeuds toriques, il est possible de modifier cette construction pour que I'entrelacs projectif correspondant ait une seule composante isotope au noeud torique considéré. Pour chacune de ces courbes tropicales réelles, nous faisons appel au théorème récent de G. Mikhalkin, qui affirme l'existence d'une algébrique réelle non singulière dans IRP^3, de même genre et degré que la courbe tropicale réelle considérée, et qui est isotope à l'entrelacs projectif correspondant. / In this thesis, we construct real tropical curves in R^3 whose projectivization - which is a projective link in RP^3 - has 2connected components, one of them being isotopic to a given knot. For some torus knots, it is possible to modify thetropical construction such that the corresponding projective link is a knot (with a single component) isotopic to the giventorus knot. For each of these real tropical curve, we use a recent result of G. Mikhalkin, asserting the existence of a realnon singular algebraic curve in RP^3, of the same genus and degree as the real tropical curve, and isotopic to thecorresponding projective link.
Identifer | oai:union.ndltd.org:theses.fr/2012STRAD030 |
Date | 20 September 2012 |
Creators | Will, Etienne |
Contributors | Strasbourg, Itenberg, Ilia |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds