In this thesis, we consider three parameters associated with graphs : stack number, track number, and layered pathwidth. Our first result is to show that the stack number of any graph is at most 4 times its layered pathwidth. This result complements an existing result of Dujmovic et al. that showed that the queue number of a graph is at most 3 times its layered pathwidth minus one (Dujmovic, Morin, and Wood [SIAM J. Comput., 553–579, 2005]). Our second result is to show that graphs of track number at most 3 have layered pathwidth at most 4. This answers an open question posed by Banister et al. (Bannister, Devanny, Dujmovic, Eppstein, and Wood [GD 2016, 499–510, 2016, Algorithmica, 1–23, 2018]).
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/40348 |
Date | 09 April 2020 |
Creators | Yelle, Céline |
Contributors | Dujmovic, Vida, Morin, Pat |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0018 seconds