Return to search

Path Planning and Collision Avoidance for a 6-DOF Manipulator : A Comparative Study of Path Planning and Collision Avoidance Algorithms for the Saab Seaeye eM1-7 Electric Manipulator

This project investigated the implementation and evaluation of various collision-free path planning algorithms for the Saab Seaeye eM1-7 6-DOF Electric Manipulator (eManip). The primary goal was to enhance the autonomous performance of the eManip by integrating efficient path planning methodologies, ultimately ensuring the avoidance of collisions and manipulator singularities during underwater operations. Key algorithms examined included the Rapidly-exploring Random Trees (RRT) algorithm and its enhanced variants. Through simulation tests in MATLAB and Gazebo, metrics such as planning time, path length, and the number of explored nodes were evaluated. The results highlighted the robustness of Goal-biased and Bidirectional RRT* (Gb-Bd-RRT*), which consistently performed well across various environments. The research also highlighted the correlation between algorithm effectiveness and specific task attributes, emphasizing their adaptability to complex environments. This research contributes valuable insights into the effectiveness of path planning algorithms, informing the selection and integration of viable strategies for 6-DOF robotic manipulators.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-204248
Date January 2024
CreatorsOhlander, Hampus, Johnson, David
PublisherLinköpings universitet, Institutionen för systemteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds