Return to search

<i>Sclerotinia sclerotiorum</i> pathogenicity factors : regulation and interaction with the host

<p><i>S. sclerotiorum</i> has been studied for over 100 years. Despite this, a definite resistance mechanism to this plant pathogen remains to be identified. Researchers continue to examine the <i>S. sclerotiorum</i> life cycle to identify stages where effective disease management strategies can be applied. The development of molecular tools has allowed for a better understanding of the pathogen and created new opportunities for research on plant-pathogen interactions.</p>
<p>Most of the past research on pathogenicity factors produced by this pathogen, such as hydrolytic enzymes, studied them in isolation. This thesis examines how <i>S. sclerotiorum</i> pathogenicity factors, including cutinases, polygalacturonases and necrosis-inducing peptides, work in concert during the infection. The first study explored processes for cuticle penetration leading to the identification of the gene encoding S. sclerotiorum cutinase A and the characterization of the factors that govern its expression during the infection. The second study investigated how the pathogen penetrates the cell wall and proliferates within the host. In this regard, the mechanism with which expression of <i>S. sclerotiorum</i> polygalacturonase genes is regulated was elucidated. The interplay with host polygalacturonase inhibitor proteins was also demonstrated and related to the mechanisms of host resistance. The third study examined factors involved in tissue necrosis and two necrosis-inducing proteins were characterized. This study also unraveled part of the signaling mechanisms that allow for the pathogen to regulate pathogenicity gene expression during the infection. The signaling mechanisms were found to involve calcium, cAMP and at least one <i>S. sclerotiorum</i> mitogen activated protein kinase (SMK3) working in concert to coordinate the infection process. SMK3 was found to play a major role in a variety of vital functions, such as mycelial branching, infection cushion formation and sclerotia production. Genetic transformation of <i>S. sclerotiorum</i> was required to enable certain aspects of this study. My approach to this led to the development of a highly efficient method to isolate homokaryotic lines of filamentous fungi. In conclusion, this thesis has advanced the understanding of <i>S. sclerotiorum</i>-host interactions and identified a number of factors involved in pathogenesis.</p>

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-04152011-115612
Date21 April 2011
CreatorsDallal Bashi, Zafer
ContributorsDwayne Hegedus, Robert Tayler, Vladimer Vujanovic, Yangdo Wei, Pierre Fobert, Dilantha Fernando, George Khachatourians
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-04152011-115612/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0012 seconds