Return to search

Sequential Pattern Mining on Electronic Medical Records for Finding Optimal Clinical Pathways

Electronic Medical Records (EMRs) are digital versions of paper charts, used to record the treatment of different patients in hospitals. Clinical pathways are used as guidelines for how to treat different diseases, determined by observing outcomes from previous treatments. Sequential pattern mining is a version of data mining where the data mined is organized in sequences. It is a common research topic in data mining with many new variations on existing algorithms being introduced frequently. In a previous report, the sequential pattern mining algorithm PrefixSpan was used to mine patterns in EMRs to verify or suggest new clinical pathways. It was found to only be able to verify pathways partially. One of the reasons stated for this was that PrefixSpan was too inefficient to be able to mine at a low enough support to consider some items. In this report CSpan is used instead, since it is supposed to outperform PrefixSpan by up to two orders of magnitude, in order to improve runtime and thereby address the problems mentioned in the previous work. The results show that CSpan did indeed improve the runtime and the algorithm was able to mine at a lower minimum support. However, the output was only barely improved. / Electronic Medical Records (EMRs) är digitala versioner av behandlingshistoriken för patienter på sjukhus. Clinical pathways används som riktlinjer för hur olika sjukdomar borde behandlas, vilka bestäms genom att observera utkomsten av tidigare behandlingar. Sequential pattern mining är en typ av data mining där datan som behandlas är strukturerad i sekvenser. Det är ett vanligt forskningsområde inom data mining där många nya variationer av existerande algoritmer introduceras frekvent. I en tidigare rapport användes sequential pattern mining algoritmen PrefixSpan på EMRs för att verifiera eller föreslå nya clinical pathways. Den kunde dock endast verifiera pathways delvis. En av anledningarna som nämndes för detta var att PrefixSpan var för ineffektiv för att kunna köras med en tillräckligt låg support för att kunna finna vissa åtgärder i en behandling. I den här rapporten används istället CSpan, eftersom den ska överprestera PrefixSpan med upp till två storleksordningar, för att förbättra körningstiden och därmed adressera problemen som nämns i den tidigare rapporten. Resultaten visar att CSpan förbättrade körningstiden och algoritmen kunde köras med lägre support. Däremot blev utdatan knappt förbättrad.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-230104
Date January 2018
CreatorsEdman, Henrik
PublisherKTH, Programvaruteknik och datorsystem, SCS
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2018:133

Page generated in 0.0022 seconds