Return to search

Towards high-chi block copolymers at the industry scale : routes for a possible integration as a new nanostructuring technology / Vers les copolymères à blocs à forte incompatibilité dans l'industrie : des voies pour l'intégration en tant que nouvelle technologie de nanostructuration

La complexité et le coût croissant des processus nécessaires pour fabriquer des processeurs de plus en plus puissants de l'industrie microélectronique conduit à des structures de plus en plus petites. La photolithographie, technologie clé pour la nanostructuration, atteint aujourd'hui ses limites en termes de résolution. Des méthodes alternatives doivent donc être trouvées afin de continuer à produire des transistors plus efficaces, tout en gardant les coûts de production à un niveau raisonnable. La combinaison de la photolithographie classique et de l'auto-assemblage de copolymères à blocs (CPB) semble être une alternative prometteuse. Les copolymères à blocs ont la propriété de créer une séparation de phases à l'échelle du nanomètre grâce à l'incompatibilité chimique (décrite par le paramètre d'interaction chi) des blocs. De cette façon, lorsque cette séparation de phase est formée à la surface d’un substrat, des structures telles que des sphères, des cylindres ou des lamelles peuvent être obtenues et utilisées comme masques de gravure pour la nanostructuration. Le CPB le plus utilisé est le Polystyrène-Polyméthacrylate de méthyle (PS-PMMA), qui a été étudié pendant plus de 20 ans. Le PS-PMMA est un CPB de faible chi et ne peut pas atteindre des tailles de structure inférieure à 10nm. Plus l'incompatibilité des blocs (c’est-à-dire le chi) est importante, plus la taille des structures possibles est petite. Cette thèse traite principalement le système Polystyrène-Polydiméthylsiloxane (PS-PDMS), un CPB de haute valeur de chi, et évalue son éventuelle intégration dans l'industrie de la microélectronique. Des procédés ont été développés et optimisés en vue de leur utilisation future dans l'industrie. Un procédé de recuit commun pour les "high-chi" est le recuit sous vapeur de solvant (RVS), où la couche de CPB est exposée aux vapeurs de solvants. Les molécules de solvant gonflent le CPB et augment ainsi la mobilité des chaînes de polymère, permettant l’organisation des structures à grande échelle. Bien que ce procédé soit largement utilisé, il n'a jamais été rapporté sur des lignes de production à grande échelle. Le RVS est un processus très complexe qui est sensible à l'environnement et utilise souvent des solvants toxiques. Au cours de cette thèse, des mécanismes de RVS sont étudiés et des solvants non-toxiques qui sont compatibles avec l'environnement industriel sont proposés comme alternative. Une autre solution pour le recuit de CPBs "high-chi" sans solvant est également proposée. En formulant la solution de CPB avec des molécules de plastifiant, un auto-assemblage rapide avec un simple recuit thermique est possible. La faisabilité de ce processus a été démontrée sur des tranches de silicium de 300mm de diamètre. Le transfert des motifs par gravure est une étape importante et problématique en nanofabrication. Plus les tailles sont réduites, plus le facteur d'aspect est haut et le processus de gravure difficile. Des procédés de gravure par plasma différents, tous généralement utilisés dans les procédés de gravure industrielle, sont étudiés sur le matériau PS-PDMS. Des nanostructures de silicium de 10nm de large et des structures avec un rapport d'aspect de 6:1 ont été gravées avec succès. Enfin, un processus d’inclusion d’oxydes métalliques par simple dépôt par centrifugation a été démontré sur le polymère PS-PMMA. Ce BCP a l'avantage d’être un système bien connu grâce aux nombreux groupes de recherche qui s’y intéresse. Cependant, ses performances en gravure pour le transfert des motifs est peu satisfaisant à cause de la faible sélectivité entre les blocs PS et PMMA. Des procédés de gravure compliqués en plusieurs étapes doivent être effectués afin de transférer les motifs de manière satisfaisante. En introduisant des sels métalliques de manière sélective dans l'un des blocs, le contraste de gravure est considérablement augmenté et le transfert du motif peut être obtenu en une seule étape de gravure plasma. / The increasing cost and complexity of processes needed to keep up with the ever increasing demand for more powerful processors in the IC industry, lead to smaller and smaller feature sizes. Photolithography, once the workhorse for nanostructuration, reaches now its physical limits in terms of resolution. Other, alternative methods have thus to be found in order to continue producing more efficient integrated circuits, while keeping the production costs at a reasonable level. The combination of conventional photolithography and directed self-assembly of block copolymers (BCP) seems to be one promising alternative. Block copolymers have the unique property to phase separate at the nanometer scale driven by the chemical incompatibility (described by the Flory-Huggins interaction parameter chi) of the blocks. This way, when brought onto a substrate, structures like spheres, cylinders or lamellar can be obtained and used as etching masks for nanostructuration. Probably the most used BCP is Polystyrene-b-Polymethylmethacrylate (PS-b-PMMA), which has been studied for over 20 years. PS-b-PMMA is a so called “low-chi” BCP and can reach feature sizes not smaller than 10 nm. The higher the incompatibility of the blocks (i.e. the higher the chi-value), the smaller the obtainable feature size. This thesis deals primarily with “high-chi” Polystyrene-b-Polydimethylsiloxane (PS-b-PDMS) block copolymers and evaluates its possible integration into IC industry. Processes are developed and optimized in view of their future application in industry. A common annealing method for “high-χ” block copolymers is solvent vapor annealing (SVA), where the BCP layer is exposed to solvent vapors. Solvent molecules swell then the BCP layer, increasing the mobility of polymer chains and allowing long range ordering of the features. Although this method is widely used, it has never been reported on large scale production lines, for example on 300 mm wafers. The SVA is a very complex process that is sensitive to the environment and uses often toxic solvents. During this thesis, mechanisms of solvent vapor annealing are studied and safe solvents that are compatible with industrial environment are studied. Furthermore alternative solutions for annealing high-chi BCPs without solvents are proposed. Blending the BCP with plasticizer molecules, for example, leads to rapid self-assembly with thermal annealing and the feasibility of this process was shown on 300 mm wafers.Pattern transfer etching is a problematic step in IC nanostructuring. The smaller the features, the higher the aspect ratio, the more challenging the etching process. Different plasma etching procedures, all typically used in industrial gate etching processes, are studied on PS-b-PDMS. Challenging silicon features of down to 10 nm and aspect ratios of up to 6:1 are obtained.Finally, a simple spin-coating process of metal-oxide inclusion on widespread PS-b-PMMA is introduced in which etch selectivity of the BCP is highly increased. PS-b-PMMA has the advantage of being studied by numerous research groups and the understanding of the BCP is very advanced. However, its etching quality for pattern transfer are very poor as to the poor etch selectivity between PS and PMMA. Complicated multiple-step etching processes, where wet etching and dry etching are alternated have to be performed in order to transfer the patterns satisfactorily. By introducing metal salts selectively in one of the blocks, the etch contrast is considerably enhanced and the pattern transfer can be obtained in one single step of dry etching.

Identiferoai:union.ndltd.org:theses.fr/2016GREAT109
Date19 October 2016
CreatorsBöHME, Sophie
ContributorsGrenoble Alpes, Boussey, Jumana
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds