In recent years, the development of OFDM system has received a lot of attention. Some examples of existing systems where OFDM system is used are digital audio broadcasting, high-definition television terrestrial broadcasting, asymmetric digital subcarrier lines and so on. There are several reasons for using OFDM systems. First, OFDM system is an efficient way to deal with multipath effect. Under a fixed amount of delay spread, the implementation complexity of OFDM system is much less than that of single-carrier system. The reason is that OFDM system can simply use guard time to process delay spread without a complex equalizer. Second, OFDM system can achieve high data rate to transmit by using large number of subcarriers. Third, OFDM system can also efficiently combat with narrow band interference. On the other hand, OFDM system also has two main drawbacks. One is more sensitive to frequency offset, the other is higher PAPR.
This thesis focuses on the PAPR problem. Pulse shaping method is an effective way to solve this problem. It can be used for any number of subcarriers of OFDM systems, so it is very flexible. It doesn¡¦t have any additional IFFTs in comparison to the selected mapping or partial transmit sequence method. Its implementation is simpler. And because it also doesn¡¦t distort the OFDM symbols, its bit error performance should be better than the clipping method. According to the pulse shaping method, we get a better waveform that can make the PAPR of OFDM symbols do not exceed about 2.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0905104-145533 |
Date | 05 September 2004 |
Creators | Hung, Kuen-Ming |
Contributors | Chin-Der Wan, Shiunn-Jang Chern, Ken-Huang Lin, Ju-Ya Chen |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0905104-145533 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0018 seconds