The peaks over threshold (POT) method provides an attractive framework for estimating the risk of extreme events such as severe storms or large insurance claims. However, the conventional POT procedure, where the threshold excesses are modelled by a generalized Pareto distribution, suffers from small samples and subjective threshold selection. In recent years, two alternative approaches have been proposed in the form of mixture models that estimate the threshold and a folding procedure that generates larger tail samples. In this paper the empirical performances of the conventional POT procedure, the folding procedure and a mixture model are compared by modelling data sets on fire insurance claims and hurricane damage costs. The results show that the folding procedure gives smaller standard errors of the parameter estimates and in some cases more stable quantile estimates than the conventional POT procedure. The mixture model estimates are dependent on the starting values in the numerical maximum likelihood estimation, and are therefore difficult to compare with those from the other procedures. The conclusion is that none of the procedures is overall better than the others but that there are situations where one method may be preferred.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-297063 |
Date | January 2016 |
Creators | Engberg, Alexander |
Publisher | Uppsala universitet, Statistiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds