Low Dose Metronomic (LDM) chemotherapy, combined with VEGF pathway inhibitors, is a highly effective strategy to coordinately inhibit angiogenesis and tumor growth. We have tested the efficacies of daily oral LDM topotecan alone and in combination with pazopanib, in three pediatric extracranial solid tumors mouse models. We also investigated the effect of prolonged combination therapy with the combination on tumor behavior in a neuroblastoma mouse xenograft model.
In-vitro dose-response study of topotecan and pazopanib was conducted on several cell lines. In-vivo antitumor efficacies of drugs, as single agents and combination, were tested in immunodeficient mice models. For studying the mechanisms of resistance to our therapy, a time-response study (28, 56 and 80 days) was conducted in SK-N-BE(2) xenografts model, treated in same way as earlier.
In vitro, topotecan caused a dose-dependent decrease in viabilities of all cell lines, while pazopanib did not. In vivo, the combination of topotecan and pazopanib demonstrated significant anti-tumor activity compared to the respective single agents in all models. Reductions in the levels of viable Circulating Endothelial Progenitors and/or Circulating Endothelial Cells and tumor microvessel density were correlated with tumor response and therefore confirmed the antiangiogenic activity of the regimens. However, the combination also caused significantly higher myelotoxicity than single agents. Pharmacokinetic study did not reveal any interaction between the two co-administered drugs.
In the time-response study, we found that only combination treated animals survived till 80 days. However, tumors in these animals started growing gradually after 50 days. Unlike single agents, all three durations of combination treatment significantly lowered tumor microvessel densities, compared to the control. However, tumors treated with the combination for 56 and 80 days had higher pericyte coverage. The combination increased the hypoxia, angiogenic expression and proliferative index and caused metabolic reprogramming of tumor cells.
We conclude that the combination of LDM topotecan and pazopanib has superior efficacy than either single agents, which is attributed to superior antiangiogenic activity. However, prolonged treatment with the combination can have additive myelotoxicity and may encounter adaptive resistance associated with metabolic reprogramming and increased proliferation of the tumor cells.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/43627 |
Date | 10 January 2014 |
Creators | Kumar, Sushil |
Contributors | Baruchel, Sylvain |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds