Return to search

Dynamics of a spin-1 BEC in the regime of a quantum inverted pendulum

The primary study of this thesis is the experimental realization of the non-equilibrium dynamics of a quantum inverted pendulum as examined in the collective spin dynamics of a spin-1 Bose-Einstein condensate. In order to compare experimental results with the simulation past the low depletion limit, current simulation techniques needed to be extended to model atomic loss. These extensions show that traditional measurements of the system evolution (e.g. measuring the mean and standard deviation of the evolving quantity) were insufficient in capturing the quantum nature of the evolution. It became necessary to look at higher order moments and cumulants of the distributions in order to capture the quantum fluctuations. Extending the implications of the loss model further, it is possible that the system evolves in a way previously unpredicted. Spin-mixing from a hyperbolic fixed point in the phase space and low noise atom counting form the core of the experiment to measure the evolution of the distributions of the spin populations. The evolution of the system is also compared to its classical analogue, the momentum-shortened inverted pendulum.

The other experimental study in this thesis is mapping the mean-field phase space. The mean-field phase space consists of different energy contours that are divided into both phase-winding trajectories and closed orbits. These two regions are divided by a separatrix whose orbit has infinite period. Coherent states can be created fairly accurately within the phase space and allowed to evolve freely. The nature of their subsequent evolution provides the shape of the phase space orbit at that initial condition. From this analysis a prediction of the nature of the entire phase space is possible.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/47651
Date03 April 2013
CreatorsGerving, Corey Scott
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0025 seconds