The phenomenon of gas entrainment, as a result of impinging liquid jets, was experimentally investigated. The purpose of these investigations was to create a solid experimental database necessary for the development and validation of computational fluid dynamics (CFD) codes. In this work, various experimental setups were built to allow employing various imaging measurement techniques with high spatial and temporal resolution.
High-speed imaging was applied for characterizing the flow structure that develops under the free surface. It was found that gas entrainment takes place as soon as the jet impact velocity overcomes the value of 1.2 m/s. The bubble plume, formed as a result of impingement, consists of two distinct regions: an inner region with high turbulence and fine freely
dispersed bubbles and an outer region, where larger bubbles move towards the free surface. Two mechanisms are responsible for the occurrence of gas entrainment. High-speed camera observations were validated by means of ultrafast x-ray computed tomography, an innovative non-intrusive measurement technique. Also, quantitative information regarding
the bubble plume was acquired from the high-speed observations, in terms of: penetration depth, width and spreading angle of the bubble plume.
Measurements, based on two wire-mesh sensors, were performed to assess the gas entrainment rate. In these measurements, void fraction distributions and gas velocities were quantified. The entrainment rate was calculated as an integral over the entrained volumetric gas fraction. It was found to be a function of the jet velocity and length. Results were validated using dual-plane x-ray computed tomography. Results were in agreement with the ones obtained from the wire-mesh sensors and approximately four to six times smaller than predictions found in related publications.
Instantaneous as well as time-averaged velocity fields of the continuous phase were gained by means of particle image velocimetry (PIV). Axial time-averaged velocities followed a power law profile, typical for fully developed flow conditions. Two recirculating vortices were found in the flow: one occurs as a result of the water adhering to the lateral wall of
the tank and the flow being confined by the bottom wall, while the second one is generated in the wake of rising bubbles. Bubble entrainment was found to reduce liquid phase mean velocities and to enhance fluctuations in the streamwise direction. This is reflected in the distribution of the turbulence kinetic energy.
Last but not least, several examples of comparisons between experimental data and CFD results stand to demonstrate the importance of the experimental observations gathered in the frame of this work. It is shown that the experimental data provides a good basis not only for qualitative comparisons, but also for quantitative correlations.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:31117 |
Date | 27 November 2018 |
Creators | Melzer, Dana |
Contributors | Hampel, Uwe, Hurtado, Antonio, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds